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SUMMARY 

 Rhythmic neural networks are dynamic systems that reliably generate stereotyped 

activity that drives numerous biological processes essential to life, including motor 

pattern generation. Due to these networks’ reliable pattern generation, as well as the 

broad wealth of insights into fundamental questions in neuroscience that have been 

gained in their study without considering their fundamentally stochastic nature, the 

variability in their pattern generation is often overlooked. But such rhythmic networks are 

typically composed of a richly diverse ensemble of neurons, synapses, and their 

underlying properties and kinetics, each of which possesses individual dynamics that 

interact to contribute to the collective network dynamics that determine not just steady-

state neural network activity, but also the presence or absence of network reliability and 

stability in the face of perturbations and stochastic processes. Because the crustacean 

stomatogastric network is a well studied and understood network, is experimentally 

amenable, and has been modeled extensively, it serves as a good system for investigating 

the role specific features of network composition play in determining network activity 

variability. Advances here may readily be adapted to inform models that are currently the 

focus of intense study aimed at gaining an understanding of the connection between 

underlying molecular and genetic cell properties and rhythmic neural network activity.  

 The primary focus of this research is to explore the impacts of one such feature of 

network composition that is involved in stochastic network activity—the dynamics of 

synaptic feedback—and in turn determining its impact on variability of the pacemaker 

network. We have discovered that synaptic feedback dynamics in the crustacean 
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stomatogastric pattern generating network tend to be ordered in multiple senses that 

optimally minimize rhythmic variability: in terms of both feedback neuron phase 

response properties, and cycle-by-cycle phase maintenance of synaptic feedback burst 

width. Our findings have implications for neural network design and optimization as well 

as neural network model and database construction. 
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CHAPTER 1: INTRODUCTION 

INTRODUCTION 

Neural networks and oscillations 

Networks of neurons connected to one another form the patterned activity that 

generates the higher functions underlying life. In particular, neural networks are central to 

many important rhythmic nervous system functions including motor and behavioral tasks 

such as walking (Llinás, 1988; Ramirez et al., 2004), the coordination of breathing 

(Koshiya and Smith, 1999), and memory and cognition (Buzsáki et al., 1994; Engel et al., 

2001). Such rhythmic neural networks characteristically involve oscillations (Berger, 

1929; Buzsáki, 2004). Many debilitating neural disorders have been found to be 

associated with dysfunction in the rhythmogenesis of these oscillations, including 

epilepsy (Worrell et al., 2004; Zijlmans et al., 2012), Parkinson’s Disease (Brown et al., 

2001), and schizophrenia (Spencer et al., 2003; Uhlhaas et al., 2008). So there has been 

much study of how networks give rise to oscillations and what is the nature of those 

oscillations in order to better understand disease (Yu et al., 2008; Rieubland et al., 2014). 

Invertebrate nervous systems also display rhythmic oscillations (Selverston, 

2010), and are amenable to studying the relationship between networks and their 

associated oscillatory activity due to their small network structure. In this work we will 

utilize these networks to examine the relationships between rhythmic networks and 

variability in their oscillatory activity. 
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Rhythmic networks and coupled oscillators 

Rhythmic neural networks are networks characterized by oscillatory activity with  

repeating intervals of high membrane voltage alternating with intervals of low membrane 

voltage. In many well studied networks, rhythmic activity takes the form of depolarized 

intervals with multiple successive action potentials supported by plateau potentials (a 

burst), interspersed with quiescent hyperpolarized intervals (Russell and Hartline, 1978; 

Miller and Selverston, 1982). Spontaneous rhythmic activity can be generated by a 

neuron endogenously, arising purely from the nonlinear activation and inactivation 

dynamics of the neuron’s membrane properties. 

Neurons in network capable of endogenous oscillatory activity that exert 

influence on one another via synaptic connections are said to be coupled oscillators 

(Glass, 2001; Winfree, 2001; Ermentrout and Chow, 2002). Here it is helpful to define 

activity intervals in each neuron in such a coupled oscillator (Figure 1): for two-neuron 

networks, the time interval between the beginning of one neuron’s cycle period (initiated 

with a spike or burst) and the time when it receives synaptic input from another neuron in 

the network is referred to as the stimulus interval (ts).  Next, the time between the receipt 

of a synaptic input and the initiation of the next burst (ending the cycle period) is referred 

to as the response interval (tr). 
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Figure 1. Firing intervals for two coupled neurons. ts1: stimulus interval for the first 

neuron; tr1: response interval for the second neuron. ts2: stimulus interval for the second 

neuron; tr2: response interval for the second neuron. Note that the stimulus interval of one 

neuron is equal to the response interval of its partner. 

 

Phase response analysis and the tS-tR curve 

One powerful extension of pulse coupled oscillator theory, called phase response 

analysis, has been used to study how network dynamics arise from interactions between 

the neurons comprising the network. In phase response analysis, a neuron’s output (spike 

or burst) occurring at the interval tr that occurs in response to an immediately preceding 

input given at a certain stimulus interval ts is tabulated for many intervals ts (Fig. 2A), 

giving us a phase resetting curve (PRC) (Fig. 2B).  The study of PRCs has proven 

invaluable to understanding how network activity is generated and how neurons 

synchronize. 

In phase response analysis it is common to compute the single-pulse PRC 

(spPRC) for pulse-coupled systems (Fig. 2A), which means that a single pulse is 

delivered and the response of subsequent cycles P2, P3, etc. are not stimulated but 

observed to measure second and third order resetting, respectively. The spPRC gives us 

an estimate of how a neuron will respond to a given synaptic input received at different 

cycle phases. Its measurement is accomplished by perturbing an ongoing oscillatory 
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rhythm with intrinsic period PInt at phase φ=tS/PInt with a stimulus that begins at stimulus 

delay ts, and tabulating the resulting normalized changes in network period. This results 

in the first order PRC, f1(φ) = (P1 – PInt)/PInt , the second order PRC f2(φ) = (P2 – Pint)/Pint 

, and so on (f1 is illustrated in Fig. 2B).  

A multiple-pulse PRC (mpPRC), however, can be measured differently than the 

spPRC, such that phasic stimulation is applied to each successive cycle (figure 2C). This 

mpPRC can then be applied to neurons that are not endogenous oscillators (Sieling et al., 

2012). Here a perturbation is repeatedly applied at a fixed stimulus interval ts, the 

resultant response interval tr is tabulated, then ts is incremented to sample another tr-ts 

relationship. This process is repeated until the entire tr-ts region of interest is estimated.  

The resulting tr-ts curve can be utilized as-is as its own variant of the PRC, or used to 

calculate a normalized phase-based mpPRC in a similar manner to the spPRC, as done 

for the functional PRC, a type of mpPRC (Cui et al., 2009). 

For our purposes we retain the tr-ts form because we examine neurons that do not 

have an intrinsic period of oscillation Pint , so phase φ is difficult to define. Therefore for 

simplicity and consistency we represent all mpPRCs in their tr-ts form, even for 

intrinsically oscillatory neurons. 
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Figure 2. Comparison of single pulse phase response curve (spPRC) and multiple-pulse 

PRC (mpPRC) analysis. Both measures allow us to characterize how sensitive a neuron is 

to changes in the onset stimulus interval tS of synaptic input, but the mpPRC method has 

the added capability of providing this measure for neurons that are adaptive (Cui et al. 

2009) and not intrinsically oscillatory (Sieling et al. 2012). (A) a measurement of the 

spPRC proceeds by isolating the measured neuron from its synaptic input, then 

introducing a conductance pulse at stimulus delay tS from the beginning of the cycle with 

the dynamic clamp with magnitude and duration designed to approximate a synaptic 

input. The period of the cycle in which this synaptic input is applied (P1) is tabulated, as 

are the following cycles P2, P3, etc. (which do not receive a stimulus), and (B) the 

resulting spPRC is calculated by repeating this process for numerous values of ts to 

sample 0<φ<1. Note here that spPRC values greater than zero indicate a phase delay in 

the occurance of the beginning of the next burst cycle, while those less than zero indicate 

a phase advance. (C) calculating the mpPRC is similar, but stimuli are repeated for each 

cycle with the stimulus delay ts. After a number of repeats, when a steady state tr* is 

reached, ts is incremented to a new value, and this is repeated until (D) the mpPRC curve 

is constructed. Here the mpPRC is left in the tr-ts form, but it can sometimes be 

calculated in the same normalized form that the spPRC uses (see text), just as the spPRC 

can be computed in the tr-ts form. Figure adapted from Sieling et al. 2012. 

 

The role of variability in rhythm generating neuronal networks 

Many networks underlying rhythmic burst generation are thought to convey 

information by their activity in different ways (Izhikevich et al., 2003). For example, in 

invertebrates it is believed that spike number in a burst, which correlates with burst width 
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as we measure it, controls muscle contraction amplitude (Morris and Hooper, 1997). 

Sometimes even the variability of a rhythmic network can be thought of as a form of 

information in itself, as when the stick insect Carausius morosus uses variability in its 

walking patterns to evade the visual attention of predators (Hooper et al., 2006; Gabriel 

and Büschges, 2007), or when the mollusk Aplysia attempts different stochastic feeding 

patterns in order to find an acceptable feeding strategy for consuming food of diverse 

texture, size, and composition (Horn et al., 2004; Sieling et al., 2014).  

If information is conveyed by bursting networks in terms of variation in rhythmic 

activity, then a natural question that arises asks if real bursting networks possess 

properties or configurations that support or otherwise control this variation.  

Recent research has identified one feature of network structure that is important to 

invertebrate bursting rhythmic network activity variability, specifically that the variability 

of burst period of oscillatory neurons can be stabilized by the presence of inhibitory 

synaptic feedback from a LP follower neuron (Mamiya and Nadim, 2004; Nadim et al., 

2011). In such networks, it was shown that variability in cycle period is reduced 

compared to that observed in the bursting pacemaker when isolated from its synaptic 

feedback, and that the effect of extrinsic perturbations applied to the pacemaker is 

reduced. But it should be noted that in each of these experiments the follower neuron 

element of the network was either composed of a biological neuron or a very simple 

model with fixed timing. Specific details of how the pyloric network’s synaptic feedback 

influence the effect of reducing variability —including  phase response timing and burst 

width timing—have yet to be explored, and will be in this work. 
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Further, despite extensive evidence that the timing and variation of bursts are 

important, such information is generally not considered in mathematical and 

computational modeling studies of bursting neurons and neuronal networks. In part, a 

goal of this work is to establish if there are consequences for such simplification in model 

construction and identify distinctive properties of networks that such simplified models 

may fail to capture.    

The pyloric network 

The pyloric network of the crustacean stomatogastric nervous system is a 

neuronal network of the STG that functions within the larger stomatogastric nervous 

system (STNS) of crustacea (Fig. 3A) and serves to elicit rhythmic contractions in the 

muscles of the foregut’s pylorus, a process which is involved in food filtration and 

digestion (Marder and Bucher, 2001). This network’s activity consists of a stereotyped 

triphasic bursting pattern driven by the anterior burster/pyloric dilator (AB/PD) 

pacemaker complex (Russell and Hartline, 1978; Bal et al., 1988; Harris-Warrick and 

Marder, 1991), which itself consists of an electrically coupled group of one AB neuron 

and two PD neurons, all of which burst in synchrony and produce the first phase of the 

rhythm (Fig. 3B,C,D in green). The AB/PD projects inhibitory synapses to two follower 

neuron groups within the pyloric network (fig. 3C, synapses with open circles are 

cholinergic, synapses with filled circles are glutamatergic). The target neurons of these 

projections are the lateral pyloric neuron (LP, one per STG) and the pyloric neurons (PY, 

5-6 each per STG), which are typically each represented as one lumped neuron each in 

modeling studies due to the strong electrical coupling between PY neurons. Functionally 

these follower neurons are distinguished by their participation in bursting network 
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oscillation via post-inhibitory rebound, meaning that they fire bursts following to the 

application and removal of inhibitory synaptic input. In this way these neurons are 

conditional bursters at the pyloric network’s oscillation frequency, and absent synaptic 

inhibition are either silent or spike tonically (Fig. 3D). 

Figure 3. Crustacean stomatogastric nervous system (STNS). (A) The Stomatogastric 

Ganglion (STG) is amenable to intracellular manipulation via its somata, while 

extracellular recordings can be measured from the motor nerves: lateroventricular nerve 

(lvn, contains motor nerves for LP [red], PY [blue], and PD[green]), and the nerves of PY 

and PD (pyn and pdn). Adapted from Marder and Bucher, 2007. (B) Recorded 

extracellular traces displaying triphasic rhythm on lvn. The intact network pyloric 

network (C) generates a triphasic bursting rhythm by utilizing a pacemaker neuron group 

(AB/PD), which leads the rhythm, and two types of follower neurons (LP and PY) that 

burst in response to post-inhibitory rebound imposed by synaptic input from AB/PD. 

Reciprocal inhibition between LP and PY and synaptic feedback from LP to PY are 

important features of this circuit. Bath application of PTX (D) pharmacologically blocks 

glutamatergic synapses in the pyloric network, which has the effect of synaptically 

isolating AB/PD, and minimizing synaptic inhibition of the follower neurons. The 

resulting network activity reveals the intrinsic rhythmicity of AB/PD along with the lack 

of propensity of LP or PY to burst on their own on a pyloric timescale.  
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Despite the apparent complexity of this system in generating its stereotyped 

triphasic rhythmic activity, we do stress that this system is both simple in terms of 

neuronal central pattern generator circuits and well understood in its composition and 

connectivity, which together with its experimental tractability and history of study by 

computational and mathematical modeling, makes it well suited to study the effects of 

synaptic feedback on oscillations in neuronal networks. Further, bath application of 

picrotoxin (PTX) to the pyloric network has the effect of blocking all inhibitory 

glutamatergic synapses in the system, which functionally isolates the AB/PD from 

synaptic feedback (Fig. 3D), facilitating the construction of hybrid networks using the 

dynamic clamp (Prinz et al., 2004a). 

Variability in the pyloric network 

 The pacemaker neuron (AB/PD) exhibits variability in both period (Pi) and burst 

width (Bi), both when receiving feedback inhibition from the follower neurons (Fig. 4, 

left), and when isolated from the network (Fig. 4, right). Since these features of network 

activity are important, we will primarily concern ourselves with these measures in our 

studies. To quantify variability of these measures we will primarily use the standard 

deviation σ instead of alternative measures of variability such as the coefficient of 

variation (CV=σ/µ), since measures based on a ratio are not appropriate for use in 

analysis of variance (ANOVA) statistical tests (Sokal and Rohlf, 1995). We make one 

exception in using the CV during a preliminary study for purposes of consistency with 

other studies, in which we do not use ANOVA. 



www.manaraa.com

Figure 4. Measures of activity variability in the pyloric network of the STNS, in both the 

intact network where the pacemaking AB/PD receives inhibitory synaptic feedback from 

LP (left panel), or when the AB/PD neuron is isolated from synaptic input by application 

of PTX (right panel). We measure both cycle period (Pi) and burst width (Bi) in the same 

neuron (AB/PD) in both cases. Intracellular recordings of AB/PD activity are made with 

sharp electrode recording from PD (VmPD). Extracellular recordings were made from the 

lvn (Vlvn, left). Color coding of the intact network activity matches that of figure 3: 

AB/PD (green), LP (red), PY (blue).  
 

Hybrid networks 

The use of hybrid networks to explore small neuronal networks is a particular 

development that arose from advances in the dynamic clamp (Prinz et al. 2004), which is 

the utilization of circuitry or a computer to solve equations that simulate artificial 

conductances that work to modify the conductance experienced by a biological neuron. 

The conductances that the dynamic clamp simulates are called artificial because—unlike 

the biological conductances that exist in a biological neuron, which arise from ion 

channels embedded in the neuron’s plasma membrane and may have disparate effects on 

the neuron’s electrical activity depending upon their spatial distribution and density 

across the neuron’s complex morphology—the dynamic clamp simulates all conductance 

operations outside of the neuron and typically imposes that conductance on the biological 

cell in a way that differs from the biological conductance. Dynamic clamp exploits 

Ohm’s law, I=G·V, where I is the electrical current, G is the conductance, and V is the 

membrane potential. When the experimenter using dynamic clamp desires to add or 
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subtract a given G from a neuron, all that is required is to solve for a mathematical model 

of that G, multiply by the measured membrane voltage V, and inject the resulting product 

into the neuron as a current I using standard electrophysiological equipment. 

Hybrid networks typically use the dynamic clamp to establish conductance 

models for artificial synapses, artificial ion channels within biological neurons, and 

sometimes entire model neurons. 

Using the dynamic clamp, we consider hybrid networks which use model neurons 

that are not modeled based upon the dynamics of the ion channels of the neuron to be 

modeled as in the popular Hodgkin-Huxley models, but instead utilize the fPRC itself to 

provide model neuron activity. Because the fPRC contains all necessary information to 

determine the timing of an neuron’s output (at tr) given the timing of the last received 

input (tS), all that is required to generate activity identical to that of the neuron the fPRC 

represents is a way to calculate the activity waveform characteristic of a response to an 

input, assuming that the input does not vary in duration and strength (Oprisan and 

Canavier 2005). In such a way, the dynamic clamp is able to map the input of one cycle 

of the pulse coupled system to the next. Because this only serves to model the output of a 

neuron and does not directly utilize a neuron’s underlying biophysics and electrical 

dynamics, we refer to it simply as a virtual feedback unit (VFU). 
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PRELIMINARY STUDIES 

Synaptic feedback in a hybrid network reduces activity variability 

 Previous studies have shown that the presence of inhibitory synaptic feedback is 

sufficient to significantly reduce variability in period of the AB/PD neuron in both 

biological preparations and model studies (Nadim et al., 2011). However, it was not 

immediately clear that we could observe the same effect in a hybrid network constructed 

with a biological AB/PD and dynamic clamp implemented VFU, due to uncertainties 

about space clamp limitations, limitations of the maximal conductance that the dynamic 

clamp can handle (Preyer and Butera, 2009; Hooper and Prinz, 2011), and simplifications 

that are commonly made to the conductance waveform in dynamic clamp. Nadim et al. 

did impose artificial synaptic inhibition on an AB/PD using dynamic clamp, but there 

was no feedback to the PIR neuron to make a true hybrid network, the change in CV was 

not reported for these experiments, and the synaptic conductance utilized was well above 

the biological range observed in vitro of ~20-90nS (Prinz et al., 2003b; Archila, 2013). 

So prior to further analysis we tested for period CV reduction from synaptic feedback 

with our hybrid network in N=7 preparations. The VFU to PD synaptic conductance was 

set in the middle of the biological range (50nS), and VFU burst timing and duration 

mimicked that of the biological LP measured in the intact network prior to synaptic 

blockade with PTX. We observed a highly significant reduction in CV over the isolated 

AB/PD as measured by a two-tailed paired-samples Student’s t-test with p < 0.001 (Fig. 

5), which are similar to the results obtained in Nadim et al. 2011 for their fully biological 

preparations. 
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Figure 5. Coefficient of Variation (CV) of oscillation period of an isolated AB/PD (A, 

diagram) compared to a hybrid network (B, diagram) of the same isolated AB/PD with 

the artificial addition of a VFU introduced using dynamic clamp with LP inspired tr-ts 

curve and burst duration and synaptic conductance of 50nS. Activity from an example 

experiment is shown for both the isolated AB/PD (A) and the hybrid network (B). 

Oscillation period is tabulated for 50 cycles with and without the hybrid network. The 

CV was calculated and statistical comparisons were made (C) using a Student’s t-test for 

N=7 experiments, yielding a p-value < 0.001. Error bars are reported as standard error. 

 

Activity variability in hybrid networks is not due to a noiseless model 

 To ensure that reduction in noise variability in our hybrid networks was not due to 

the introduction of a noiseless computational element, we first tested if the introduction 

of a noiseless fPRC was necessary to obtain activity variability reduction. We did this by 

progressively adding extrinsic Gaussian noise to the dynamic clamp calculation of 

stimulus interval tR of the synaptic feedback that the biological AB/PD receives, in 20ms 

increments (Figure 7). A time-scaled output from a Box-Muller algorithm was used to 

calculate the Gaussian noise. An examination of the resulting changes in activity 
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variability reduction indicates that noise reduction tends to remain with the addition of at 

least 20ms of noise. Since the comparable variability level in LP is ~10ms or less, we 

conclude that activity variability reduction in our hybrid networks is not due to an 

artificially precise calculation of response interval of synaptic feedback. 

 

 

Figure 6. Hybrid network with stochasticity added to VFU response. Shows activity 

variability reduction in network period, as measured by CV2 (a measure of variability 

related to the standard deviation and CV) for increasing levels of imposed noise σPIR-Added 

in the VFU response interval, implemented with dynamic clamp. A Gaussian noise 

algorithm was employed in N=3 experiments. Error bars represent SE. 

SPECIFIC AIMS 

Aim 1: How do phase response dynamics of feedback neurons influence variability of a 

pacemaker? 

 Synaptic inhibitory feedback in pattern generating networks has multiple 

components with properties that are likely candidates for influencing network activity 

variability. One such component is the synaptic response properties of individual 

follower/feedback neuron(s), typically quantified by phase response analysis. Theoretical 

studies have indicated that as phase response curves (PRCs) change in shape, they have 

the potential to alter the stability of phase locking between two synaptically coupled 
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neurons, which may have implications for network variability. We utilize extended phase 

response analysis methods and the dynamic clamp to examine biological feedback neuron 

phase response properties, then use our findings to construct novel hybrid networks to 

study the effects of this property on network variability. 

 

Aim 2: Create a theoretical framework for quantifying optimal pacemaker network 

activity due to phase response properties 

 In collaboration with the Canavier lab, we sought to develop as simple as possible 

of a theoretical framework that would quantify how feedback from network interactions 

transform variable activity of a pacemaker, as represented by a distribution of periods. 

We succeeded in developing an algorithm that does this for data that is assumed to be 

generated by a stationary, random process. Since we did not know how valid of an 

assumption this would be in the pyloric network, we tested how well the network met 

these criteria using autocorrelation analysis, and found the assumptions were valid in 

some but not all preparations. In the preparations without statistically significant 

autocorrelation, we used the dynamic clamp’s capability to rapidly construct and 

deconstruct hybrid networks to test this theory, and found that it was successful in 

predicting relationships between phase response properties of feedback neurons and 

network variability. The theory is general enough to have broad potential for impact.  

Aim 3: How do pacemaker neuron phase intervals respond to variability on a cycle-by-

cycle basis, and does this in turn influence variability? 

 Another candidate for shaping network variability is in the burst width of 

feedback neurons, specifically depending on how these intervals react to activity 
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variability. Much work has shown that activity intervals of neurons in a pacemaking 

network scale with activity period, but how quickly this scaling occurs or its effect on 

network activity is not known. We examine intact pyloric network activity burst width, 

then use insights gained to formulate hybrid networks to test their effects on ongoing 

network activity. 

LAY INTRODUCTION 

 How do the brain and other neural circuits generate patterns necessary for life that 

we take for granted, and which when lost or become disordered can be devastating? This 

has been a driving question for many in neuroscience, and recent advances in technology 

are helping us address these questions in new ways. But application of new technologies 

sometimes is fraught with unintended consequences. Biological nervous systems are 

beautifully rich in complexity and diversity, not only in structure, connectivity, cell types, 

and neurochemistry, but also in operating principles. Neural communication is at once 

part discrete and part analog, part additive and part nonlinear, part stochastic and part 

deterministic. The scientific community creates models of such systems to try to 

summarize our understanding of them. But what pitfalls might there be in representing 

such systems as models in inherently less complex, deterministic machines such as 

computers? Do computers lull us into making certain tradeoffs in our models by the very 

nature of their operating principles?  

In this work I begin to address some of these questions by actually combining 

biological neurons and computer-based models into one “hybrid” system, which creates a 

platform for examining these questions that has both the innate stochastic activity of the 

biology and the determinism of the computer models. I then assess whether similar but 
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fundamentally different models embedded in this system produce distinct activity. Some 

models are constructed to reproduce biologically observed responses to stochasticity, 

while others are constructed to reproduce biologically plausible (but unobserved) 

alternative responses to stochasticity—where all models are otherwise designed to 

produce identical activity patterns absent stochasticity. In this way differences observed 

give us insight into how neurons might be configured and ordered to handle variability in 

certain ways, and ultimately  may help us make more realistic models of networks that 

attempt to explain network activity by their diverse underlying genetically expressed 

voltage-sensitive membrane currents.  

Of course in order to inform these hybrid networks with what is a biologically 

observed feature I first had to perform some basic research. The broad range of 

techniques, theories, and levels of abstraction touched on thus far explains why I chose to 

study these questions in crustacean neurons. The study of neurons of the crab C. borealis 

may at first seem strange if our interest is in gaining understanding how the brain and 

nervous system of humans works or is disordered with some pathology, but this system 

has the unique advantages of having been extensively studied and mapped out over 

decades of research, exhibiting stereotyped activity and neuron operating principles that 

is shared with human neurons and nervous systems, being amenable to experimental 

manipulation, and having been modeled and studied at various levels from the 

mathematical, to computational, and biomolecular. This creates some real opportunities 

to cut across disciplines and use multiple perspectives to ask big questions. 
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CHAPTER 2: FEEDBACK CONTROL OF VARIABILITY IN THE 

CYCLE PERIOD OF A CENTRAL PATTERN GENERATOR 

  

This chapter was published in 2015 (Hooper et al., 2015). 

INTRODUCTION 

 Central pattern generators drive repetitive motor activity, and both reliability and 

variability in these networks have been widely studied. Here we study how feedback 

within circuits mediating the pyloric rhythm of the Cancer borealis stomatogastric 

ganglion (STG) affects variability. The pyloric rhythm is driven by a pacemaker kernel 

consisting of the anterior burster (AB) neuron electrically coupled to two pyloric dilator 

(PD) neurons; this electrically coupled group of cells exhibits spontaneous bursting that is 

driven by AB (for simplicity throughout this chapter we will refer to this combined 

AB/PD complex as the PD). There is a single chemical feedback synapse onto the 

pacemaker kernel, an inhibitory synapse from the lateral pyloric (LP) neuron onto the PD 

neurons (Selverston and Moulins, 1987). Previous work (Nadim et al., 2011) used phase-

plane analyses of the oscillator kernel to show that the feedback from LP decreases the 

variability in the oscillation cycle period of the pyloric rhythm. Another study 

demonstrated that knowledge of phase resetting information can be used to control 

periodicity of rhythmic neurons (Stigen et al., 2011), providing a clue that perhaps 

biological networks utilize phase resetting in some way to govern their rhythmic 

variability.  

 The LP neuron is not an intrinsic burster, but rather emits a post-inhibitory 

rebound (PIR) burst after receiving a burst of inhibitory input from the PD, so it is a 
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conditional burster (see Fig. 1A2). In a previous study we have shown how the PIR burst 

can be employed to adapt phase response analysis to such conditional bursters (Sieling et 

al., 2012), which means that it is now possible to examine the consequences of the 

interaction between the pyloric network’s PD and LP using phase response theory. 

 In this study, we explore the phase response properties of LP, then provide a 

general theory of how a feedback element such as LP affects variability in the cycle 

period of a pacemaker, with the intrinsic period of the pacemaker characterized as a 

random process. Because some of the variability in pyloric rhythmic activity is often not 

random but rather is attributable to other processes such as interactions with other CPGs 

within the stomatogastric nervous system including the gastric mill network (Dando et 

al., 1973; Mulloney, 1977; Dickinson, 1995; Clemens et al., 1998; Bartos et al., 1999; 

Thuma and Hooper, 2002; Bucher et al., 2006), we assessed the suitability of this 

assumption that the pacemaker period is a randomized process by examining the 

autocorrelation of the pacemaker’s intrinsic period. We then use a reduced, hybrid circuit, 

consisting of an isolated, biological PD pacemaker receiving virtual feedback applied 

using the dynamic clamp, in order to both test the predictions of this theory and examine 

the effect of phase response properties of the feedback element on network period 

variability. The virtual feedback was formulated simply as a latency (𝑡𝑟, or recovery 

interval) to a burst in the dynamic clamp virtual feedback unit (VFU) as a function of the 

time elapsed (𝑡𝑠, or stimulus time) since the last burst in the VFU. The tr/ts plot is closely 

related to the phase response curve (PRC) but has some advantages for hybrid network 

construction, since it retains temporal information discarded by the PRC, and can be 

defined for neurons that are not endogenous oscillators such as LP (Sieling et al., 2012). 
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Moreover, under certain assumptions it lends itself easily to a map of the firing intervals 

from one cycle to the next (Oprisan et al., 2004; Sieling et al., 2009; Canavier, 2014). Our 

VFU utilizes tr/ts plots that are based on those observed in the biological LP as well as 

simple variants in shape to examine the effect of LP’s tr/ts curve on network variability.  

 We were able to predict the distribution of network periods and firing intervals in 

the PD with feedback, using only 1) the distribution of periods in the isolated PD kernel 

prior to coupling with the feedback element, 2) the measured recovery intervals for the 

isolated PD kernel using the VFU, and 3) the latency of the virtual feedback. These 

results in general were computed numerically. However, we were able to find an 

analytical solution for one special case; this enabled us to provide an explanation of the 

effect of feedback on the variability in that case.  

METHODS 

General experimental methods 

 Adult C. Borealis crabs were obtained via overnight shipping from The Fresh 

Lobster Company (Gloucester, MA) and maintained in artificial seawater at 10°C. Crabs 

were anesthetized in ice for 30 minutes prior to dissection. The STG was dissected as 

described previously (Gutierrez and Grashow, 2009) and pinned out in a Sylgard lined 

dish containing chilled physiological saline (in mM: 440 NaCl, 11 KCl, 13 CaCl2, 26 

MgCl2, 12.4 Trizma base, 5.3 Maleic acid, pH 7.45 @ 13°C). The STG was desheathed 

and Vaseline wells were formed around the lateral ventricular nerves. All preparations 

were perfused with physiological saline maintained at 12-14°C. All electrophysiological 

data were digitized on a Digidata 1322A (Axon Instruments) with an 84μs sampling 
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interval and recorded using Clampex 9 software (Axon Instruments). Extracellular 

recordings were made from the wells using stainless steel electrodes inserted into the 

Sylgard, and signals were filtered and amplified by an A-M Systems Model 1800. 

Intracellular recordings were made with an Axoclamp 2B amplifier (Axon Instruments) 

in discontinuous current-clamp mode using glass microelectrodes (10-20 MΩ) filled with 

a solution of 0.6 M K2SO4 and 20 mM KCl. PD neurons were identified with standard 

procedures for C. borealis (Selverston and Moulins, 1976; Harris-Warrick, 1992) then 

pharmacologically isolated from glutamatergic synaptic input from LP using 

physiological saline containing 10
-5

 M Picrotoxin (PTX, Sigma-Aldrich) (Bidaut, 1980). 

LP neurons were isolated from synaptic input using a combination of PTX and 

photoinactivation of both identified PD neurons to eliminate their cholinergic input onto 

LP (Miller and Selverston, 1979). This was accomplished using glass microelectrodes 

backfilled with Alexa Fluor 568 hydrazide (10 mM in 200 mM KCl, Invitrogen) to inject 

-5 nA DC current into a PD soma for 20-30 minutes. The filled cell was then illuminated 

with a Leica EL6000 and MZFLIII using a TXR filter set for 10-15 minutes. Dynamic 

clamp (Dorval et al., 2001) protocols were programmed in house and run with an update 

rate of 50 μs on a computer with a NI PCI-6052E data acquisition card (National 

Instruments). Within these dynamic clamp protocols, we defined burst onset of all 

rhythmic biological membrane voltage traces to occur when the rising phase of the slow 

oscillation crossed a voltage threshold. This threshold was chosen so that it would be 

crossed as the rising slow oscillation was steepest to give maximum tolerance to baseline 

drift, and the slow oscillation trace was isolated from spikes by filtering the membrane 

voltage trace according to 𝑉𝑓𝑖𝑙𝑡(𝑡 + ∆𝑡) = 𝑉𝑓𝑖𝑙𝑡(𝑡) + [𝑉𝑚(𝑡 + ∆𝑡) − 𝑉𝑓𝑖𝑙𝑡(𝑡)]∆𝑡/𝜏𝑓𝑖𝑙𝑡, 
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where 𝑉𝑓𝑖𝑙𝑡 is the filtered membrane voltage, 𝑉𝑚 is the unfiltered membrane voltage, ∆𝑡 is 

the dynamic clamp time step of  50 μs , and 𝜏𝑓𝑖𝑙𝑡 = 50 ms. Analysis of all recordings was 

performed offline in Spike2 (Cambridge Electronic Design). 

 

tr/ts curve measurement and estimation 

 The interval between burst onset of a neuron and the onset of synaptic input from 

another neuron is the stimulus interval (𝑡𝑠𝑥) for each neuron, x = AB/PD or LP. The 

corresponding interval between input onset and the next burst is defined as the recovery 

interval (𝑡𝑟𝑥). We define the functions 𝑡𝑟𝑥 = 𝑔𝑥(𝑡𝑠𝑥) to quantify the dependence of 𝑡𝑟𝑥 on 

𝑡𝑠𝑥. Using dynamic clamp, these relations are measured experimentally using a multiple-

pulse PRC protocol based on the functional PRC or fPRC (Cui et al., 2009; Sieling et al., 

2012), but performed assuming no adaptation or second order resetting, such that tr/ts 

curves obtained are equivalent to those obtained from a PRC protocol (which we will 

refer to as a single-pulse PRC). These assumptions are reasonable due to results from 

previous studies that showed negligible second order resetting in PD for artificial 

inhibitory inputs within a biologically plausible parameter range, except for very early or 

late stimulus intervals that are not important to the alternating firing patterns of our 

networks (Oprisan et al., 2004; Maran et al., 2011). For oscillatory neurons our protocol 

proceeds by first applying an initial hyperpolarizing stimulus to more closely simulate the 

oscillation observed in the coupled network, and discarding the initial recovery interval 

tr[0], then repeatedly presenting a sequence of artificial synaptic inputs at a given 

stimulus interval (N=10-13 repetitions). Stimulus intervals of 20 equally spaced 

increments of the estimated intrinsic network period were measured in random order 
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(Fig. 7A1). Measurement of tr/ts curves for LP proceeds in the same way (Fig. 7A2), but 

since LP is not an endogenous bursting oscillator, the initial hyperpolarizing stimulus 

serves to evoke a rebound burst, which can then be used to determine proper stimulus 

interval for the next burst cycle (Sieling et al., 2012). The resulting response intervals 

tr[1]-tr[N] were analyzed for mean and standard deviation at each stimulus interval, and 

the results sorted by stimulus interval for plotting as a tr/ts curve (Figs. 7B1, 7B2). 

Finally, these 20 points were fit with smoothing splines under tension (with weights 

inversely proportional to standard deviation as in (Reinsch, 1967) for use by theoretical 

methods. 
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Figure 7. Measurement of tr/ts curves and firing intervals in the pyloric network. (A1) 

tr/ts curve measurement from intracellular PD procedes by repeatedly stimulating with an 

artificial synaptic input generated with dynamic clamp at a given ts, then repeating for 

each ts to be measured. (A2) tr/ts measurement in nonbursting LP (B1) Resulting 

response intervals are tabulated into the tr/ts curve for PD, exhibiting typical tr/ts curve 

shape for PD (green points are mean±SD for each ts, black dots are the first response 

intervals recorded at each new stimulus interval whose similarity to average values are 

indicative of negligible second order resetting). (B2) tr/ts curve tabulated from LP (red 

points are mean±SD for each ts, black dots are the first response intervals recorded for 

each new stimulus interval, suggesting that LP also exhibits negligible second order 

“resetting”). (B3) LP exhibits a flat tr/ts curve, corresponding to a constant response 

interval independent of stimulus interval (N=5 animals). Thin black lines show individual 

tr/ts curves as linearly interpolated means, normalized by each pyloric network’s intrinsic 

period P0. Red points show the mean tr/ts curve (mean±SE, adjusted for pairwise 

comparisons). (C) Extracellular voltage trace showing stereotypical activity of the pyloric 

pacemaker unit AB/PD (light green, one AB and two PDs) and follower neurons LP 

(red), which are connected with reciprocal inhibitory synapses and burst in a periodic 

firing pattern lead by AB/PD. PY follower neurons (blue spikes) are also present in the 

pyloric circuit but their effect on LP is ignored. LP stimulus intervals (𝑡𝑠[𝑖]) measure 

timing of synaptic input from AB/PD relative to the start of each cycle period 𝑃[𝑖], and 

response intervals (𝑡𝑟[𝑖]) measure the corresponding timing of LP’s next burst relative to 

synaptic input from AB/PD. Because LP’s tr/ts curve was found to be flat in (B), the 

mean LP response interval 𝑡�̅� measured in extracellular activity is an estimate of LP’s 

tr/ts curve. Periods, firing intervals, and LP burst durations 𝐵𝐿𝑃𝑖 were also measured and 

averaged to inform our hybrid networks such that they operate with pyloric-like activity. 

 

 The values of the parameter of the artificial synaptic input used to measure the 

tr/ts curve of PD neurons including conductance, duration, and reversal potential were 

identical in each preparation to the parameter values selected for use in the hybrid 

networks (see Hybrid Networks). For LP, the applied artificial synaptic input had 

conductance set to 100-150nS, a fixed duration proportional to each preparation’s 

average PD burst width as measured prior to intracellular impalement in 40 cycles of the 

extracellular recording of intact pyloric network activity, and a reversal potential of -

90mV. 
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Hybrid Networks 

 We constructed hybrid networks by coupling a biological PD to a dynamic clamp 

element that serves to replace feedback from LP to PD (Fig. 8A, we refer to this dynamic 

clamp element as a virtual feedback unit [VFU] to avoid confusion with a biological LP). 

The feedback from the VFU was simulated in the simplest form possible, as a linear tr/ts 

curve of arbitrary slope that responds to burst onset of PD, where the VFU’s output burst 

duration and average activity phase when coupled to PD are chosen to approximate LP 

activity.  

 We determined LP’s mean activity as follows: prior to intracellular impalement, 

40 extracellularly recorded cycles of the intact pyloric network were analyzed to obtain 

measures of mean LP stimulus and response intervals 𝑡𝑠𝐿𝑃̅̅ ̅̅ ̅ and 𝑡𝑟𝐿𝑃̅̅ ̅̅ ̅, mean LP burst 

duration 𝐵𝐿𝑃
̅̅ ̅̅ ̅, and mean network period 𝑃𝑛𝑒𝑡

̅̅ ̅̅ ̅ (Fig. 7C). So that these parameters could be 

scaled to a hybrid network of any period to mimic the phase maintenance present in the 

intact pyloric network (Hooper, 1997a, 1997b; Bucher et al., 2005; Soofi et al., 2012), 

corresponding phase intervals were then calculated as ɸ𝑠𝐿𝑃
̅̅ ̅̅ ̅̅ = 𝑡𝑠𝐿𝑃̅̅ ̅̅ ̅/𝑃𝑛𝑒𝑡

̅̅ ̅̅ ̅, ɸ𝑟𝐿𝑃
̅̅ ̅̅ ̅̅ =

𝑡𝑟𝐿𝑃̅̅ ̅̅ ̅/𝑃𝑛𝑒𝑡
̅̅ ̅̅ ̅, and LP duty cycle 𝐷𝐶𝐿𝑃

̅̅ ̅̅ ̅̅ ̅  =  𝐵𝐿𝑃
̅̅ ̅̅ ̅/𝑃𝑛𝑒𝑡

̅̅ ̅̅ ̅. 

 We then set the VFU’s burst width interval to a fixed value based upon the 

observed LP burst duty cycle, 𝐵𝑉𝐹𝑈 = 𝐷𝐶𝐿𝑃
̅̅ ̅̅ ̅̅ ̅ ∙ 𝑃0, where 𝑃0 is the mean period of the 

isolated PD prior to the formation of a hybrid network.  

 We then determined the parameters of each VFU tr/ts curve equation necessary to 

reproduce average phasing of LP across all tested tr/ts curve slopes. This maintenance of 

average phasing is necessary in order to study variability separately from effects on the 

average period. For phase locked networks, the cycle period is the sum of the mean 
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stimulus intervals in the two neurons, or the sum of the mean stimulus and response 

intervals in a single neuron (Weaver and Hooper, 2003; Mamiya and Nadim, 2004), and 

as a result our hybrid network average period will be dependent upon the corresponding 

intervals  𝑡𝑠𝑃𝐷
∗ = 𝑡𝑟𝑉𝐹𝑈

∗  and 𝑡𝑟𝑃𝐷
∗ = 𝑡𝑠𝑉𝐹𝑈

∗ , where an asterisk indicates a steady-state fixed 

point. Graphically this fixed point is located at the intersection of the plots of the tr/ts 

curve for the PD and the inverse of the tr/ts curve for the VFU at (𝑡𝑠𝑃𝐷
∗ , 𝑡𝑟𝑃𝐷

∗ ) =

(𝑡𝑟𝑉𝐹𝑈
∗ , 𝑡𝑠𝑉𝐹𝑈

∗ ) (fig. 8C).  To keep this fixed point independent of VFU tr/ts curve slope 

we modeled the VFU’s tr/ts curve as family of linear functions in point-slope form that 

each contain the fixed point (𝑡𝑟𝑉𝐹𝑈
∗ , 𝑡𝑠𝑉𝐹𝑈

∗ ), so obtain 𝑡𝑟𝑉𝐹𝑈 = 𝑔𝑉𝐹𝑈(𝑡𝑠𝑉𝐹𝑈) =

𝑚 ∙ (𝑡𝑠𝑉𝐹𝑈 − 𝑡𝑠𝑉𝐹𝑈
∗ ) + 𝑡𝑟𝑉𝐹𝑈

∗ ;  where 𝑚 is the slope. The system’s fixed point 

(𝑡𝑟𝑉𝐹𝑈
∗ , 𝑡𝑠𝑉𝐹𝑈

∗ ) was estimated as (𝑃0 ∙ ɸ𝑟𝐿𝑃
̅̅ ̅̅ ̅̅ , 𝑃0 ∙ (1 − ɸ𝑟𝐿𝑃

̅̅ ̅̅ ̅̅ )) by recognizing that 𝑃𝑛𝑒𝑡  =

 𝑡𝑠𝑉𝐹𝑈  +  𝑡𝑟𝑉𝐹𝑈, and substituting the observed LP response phase scaled by 𝑃0 for 𝑡𝑟𝑉𝐹𝑈
∗ , 

where 𝑃0 is used as an estimate of 𝑃𝑛𝑒𝑡. We varied the slope (presented in randomized 

order) from -0.4 to +1.0 by increments of 0.2 (fig. 8C). 
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Figure 8. Hybrid network protocol for a biological PD and a virtual feedback unit (VFU) 

that replaces LP. Hybrid networks are established by interfacing a pharmacologically 

isolated PD with the dynamic clamp (A). The dynamic clamp simulates an LP-like VFU 

and its synaptic feedback to PD where the response interval 𝑡𝑟𝑉𝐹𝑈 is a delay indexed from 

the beginning of the burst in PD (B) and a function of the elapsed stimulus interval 𝑡𝑠𝑉𝐹𝑈, 

implemented explicitly as a tr/ts curve (purple dashed curves, C),. Once 𝑡𝑟𝑉𝐹𝑈 has 

elapsed the dynamic clamp initiates an inhibitory square conductance pulse of fixed 

duration 𝐵𝑉𝐹𝑈, set to mimic LP’s burst duration as was measured from the intact pyloric 

network (see Fig. 1C). The VFU tr/ts curves are linear models with slopes 𝑚 (tested from 

-0.4 to +1.0 by increments of 0.2) that are set to maintain a consistent fixed point 

(𝑡𝑟𝑉𝐹𝑈
∗ , 𝑡𝑠𝑉𝐹𝑈

∗ )  across slopes and approximate pyloric activity phases (see text). 

Highlighted tr/ts curves: 𝑚 = -0.4, 0, and +0.4. 
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 Finally, we neglect synaptic plasticity and assume that all maximal synaptic 

conductances in the hybrid network are constant. The VFU to biological PD synapse is 

constituted by a 50nS virtual conductance with instantaneous activation injected into PD 

using a reversal potential of -90mV. Both selected values of conductance and reversal 

potential were based upon previous voltage clamp measurements from this synapse 

(Thirumalai, 2002; Archila and Prinz, 2012; Archila, 2013). The PRC of the AB/PD 

complex is not very sensitive to changes in the strength of synaptic input (Prinz et al., 

2003b) above 50 nS. The PD to VFU synapse is implicit in the tr/ts curve for the VFU 

and was calibrated by the biological PD to LP synapse of the intact pyloric network. 

 

Statistics 

 Inferential statistics were performed using the analytics software package SPSS 

21 (IBM). In all statistical tests the same rhythm features (period and SD) were measured 

under all conditions of tr/ts curve slope from the same experimental preparation, so they 

were analyzed as repeated measures datasets. One-way repeated measures analysis of 

variance (rANOVA) was performed on experimental data to determine if slope had an 

effect, and if an effect was present, planned comparisons were performed to test the 

significance of the VFU’s tr/ts curve with 𝑚=0. Standard errors were calculated as for 

repeated measures designs (O’Brien and Cousineau, 2014). Autocorrelation functions 

were analyzed in MATLAB using 20 lags and a sequence of 200 cycle periods of each 

isolated PD. 95% confidence intervals for the autocorrelation functions were estimated in 

the standard manner as ±1.96/√𝑛, where 𝑛 is the number of cycle periods in each 

sequence. 
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Theoretical Methods 

 The theoretical methods are based on the following assumptions. 1) The oscillator 

and the feedback element fire in an alternating pattern when coupled. This is a strong 

assumption that requires there never be consecutive bursts in one cell before the other has 

a chance to fire.  2) The response of each cell to an input from the other cell is 

characterized by measuring the time between the receipt of an input until the cell fires 

next (the recovery interval 𝑡𝑟) as a function of the time elapsed since the cell fired last 

(the stimulus interval) 𝑡𝑟𝑥 = 𝑔𝑥(𝑡𝑠𝑥). Using this curve requires three assumptions: 2a) 

When coupled in the circuit each network element has the same response to input from its 

partner as it does in isolation when the tr/ts curve is measured. This assumes burst 

duration is constant, and changes in burst duration are ignored in our analysis.  2b) The 

coupling is pulsatile so that the effects of an input are complete within one cycle and are 

not cumulative (no adaptation). 2c) Second order phase resetting is assumed to be zero, 

meaning that only the length of the cycle that contains the input is affected, and not any 

subsequent cycles.   

 Fig. 9A shows how a map can be constructed for subsequent intervals given an 

initial condition, for example, a PD recovery interval for hybrid network cycle n, 𝑡𝑟𝑃𝐷[𝑛]. 

Under the assumption of an alternating firing pattern, the stimulus interval in one neuron 

is equal to the recovery interval in the other, so we can get the next stimulus interval in 

the VFU using  𝑡𝑠𝑉𝐹𝑈[𝑛 + 1] = 𝑡𝑟𝑃𝐷[𝑛].  We can then obtain the next recovery interval 

in the VFU using the tr/ts curve for the VFU 𝑡𝑟𝑉𝐹𝑈[𝑛 + 1] = 𝑔𝑉𝐹𝑈(𝑡𝑠𝑉𝐹𝑈[𝑛 + 1]). In 

order to visualize these steps, we can plot the tr/ts curve information for the two neurons 
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with 𝑔𝑃𝐷(𝑡𝑠𝑃𝐷)  and 𝑔−1
𝑉𝐹𝑈

(𝑡𝑟𝑉𝐹𝑈) on the y-axis. The inverse is used in order to get 

equal quantities—stimulus and recovery interval pairs in partner cells—on the same axis. 

The map described so far can be visualized in the plane shown in Fig. 9B as the 

horizontal arrow leading from the point (𝑡𝑠𝑃𝐷[𝑛], 𝑡𝑟𝑃𝐷[𝑛]) to the point (𝑡𝑟𝑉𝐹𝑈[𝑛 +

1], 𝑡𝑠𝑉𝐹𝑈[𝑛 + 1]). Finally, we apply the alternating firing criterion  𝑡𝑠𝑃𝐷[𝑛 + 1] =

𝑡𝑟𝑉𝐹𝑈[𝑛 + 1] and use the tr/ts curve for PD to get 𝑡𝑟𝑃𝐷[𝑛 + 1] = 𝑔𝑃𝐷( 𝑡𝑠𝑃𝐷[𝑛 + 1]). 

These final steps can be visualized as the vertical arrow leading from the point 

(𝑡𝑟𝑉𝐹𝑈[𝑛 + 1], 𝑡𝑠𝑉𝐹𝑈[𝑛 + 1]) to the point (𝑡𝑠𝑃𝐷[𝑛 + 1], 𝑡𝑟𝑃𝐷[𝑛 + 1]) in Fig. 9B. 

Substitution of the results from the previous steps into the final step allows each recovery 

interval in PD to be calculated from the previous interval as follows:  

 

𝑡𝑟𝑃𝐷[𝑛 + 1] = 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝑡𝑟𝑃𝐷[𝑛]))   (1) 

 

 We now introduce assumption 3 and 4 in addition to the other assumptions 

described above. 3) We assume that the intrinsic period of the PD neuron is not constant, 

but rather is drawn from a smooth and continuous stationary distribution 𝜌𝑃𝑃𝐷
(𝑃𝑃𝐷) that 

can be measured. In order to keep theoretical result as general as possible, we do not 

assume any specific distribution for 𝜌𝑃𝑃𝐷
(𝑃𝑃𝐷), but instead the assumption of a constant 

distribution allows us to estimate 𝜌𝑃𝑃𝐷
(𝑃𝑃𝐷) from a recording just prior to hybrid 

network coupling. The measured histogram is used to solve integral equation (6) 

numerically. We assume that the period is a random process that draws from this 

distribution with no dependence on previous values (history-independent or memoryless).  



www.manaraa.com

We therefore redefine the map by incorporating a random process 𝑃𝑃𝐷[𝑛] for the intrinsic 

period of PD sampled once per cycle.  

 

𝑡𝑟𝑃𝐷[𝑛 + 1] = 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝑡𝑟𝑃𝐷[𝑛]), 𝑃𝑃𝐷[𝑛]) (2) 

 

 4) We further assume that the tr/ts curve scales with changes in period (this 

assumes the PRC is invariant with respect to frequency). Thus both 𝑡𝑠𝑃𝐷 and 𝑡𝑟𝑃𝐷 are 

scaled by the factor 𝑃𝑃𝐷[𝑛]/𝑃0, where 𝑃𝑃𝐷[𝑛] is the period of the present cycle and 𝑃0 is 

the estimated mean period at the time the curve was generated, such that: 

 

𝑡𝑟𝑃𝐷[𝑛 + 1] = 𝑔𝑃𝐷(𝑡𝑠𝑃𝐷[𝑛], 𝑃𝑃𝐷[𝑛]) = (𝑃𝑃𝐷[𝑛]/𝑃0) 𝑔𝑃𝐷(𝑡𝑠𝑃𝐷[𝑛]𝑃𝑃𝐷[𝑛]/𝑃0) 

 

 We checked this strong assumption in a direct experiment described in 

Experimental verification in Results and Fig. 10. 

 The distribution of intrinsic periods produces a continuous family of tr/ts curves 

(Fig. 9C), shown for a representative neuron with the thickness of line proportional to the 

probability of a given period and its associated tr/ts curve. Note that in the hybrid circuit 

constructed with the dynamic clamp (see Experimental Methods), the tr/ts curve for the 

VFU is held constant. Therefore any given point on the tr/ts curve of the VFU will map 

onto different tr/ts curves for PD on different cycles if the period is variable (Fig. 9D).  



www.manaraa.com

 
Figure 9. Map of the firing intervals. (A) The schematic shows the sequential prediction 

(arrows) of subsequent firing intervals in an alternating firing pattern given an arbitrary 

initial condition. Given that we have knowledge of the tr/ts relationship 𝑔𝑥 for both 

neurons, the recovery interval in one neuron becomes the stimulus interval for the partner 

neuron. (B) The dependence of 𝑡𝑟𝑃𝐷  on 𝑡𝑠𝑃𝐷 (dark purple curve) and of 𝑡𝑟𝑉𝐹𝑈  on 𝑡𝑠𝑉𝐹𝑈   

(light green curve) are plotted with the axes swapped for the purple curve in order to plot 

stimulus intervals from one neuron on the same axis as recovery intervals from the other 

neuron. In this space, horizontal arrows in B correspond to downward arrows in A, and 

vertical arrows in B correspond to upward arrows in A. The small dots indicate iterations 

of the firing interval, and the large dot indicates a stable attracting fixed point. (C) A 

representative distribution of the dependence of 𝑡𝑟𝑃𝐷  on 𝑡𝑠𝑃𝐷 (green curves) at different 

intrinsic periods, with the probability of exhibiting a period increasing with the thickness 

of the curve. (D) The same map as in B except the intrinsic period of PD changes 

randomly in each cycle. 

 

RESULTS 

Theoretical results 

 Our objective is to predict the distribution of the network periods 𝜚𝑃𝑛𝑒𝑡
(𝑃𝑛𝑒𝑡) in 

the hybrid circuit consisting of a pacemaker with feedback, using the known distribution 
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of intrinsic periods  𝜌𝑃𝑃𝐷
(𝑃𝑃𝐷) measured in an uncoupled PD neuron and the known 

functions 𝑔𝑃𝐷 and 𝑔𝑉𝐹𝑈 (see Methods).  If the theoretically stationary distribution 𝜚𝑡𝑟𝑃𝐷
∗  

of the recovery intervals in PD is found, the distribution of the network periods can then 

be obtained by finding each independent way of arriving at a given 𝑃𝑛𝑒𝑡 . These 

independent ways are found by plugging each possible pair of 𝜏 =  𝑡𝑟𝑃𝐷  and  𝑝 =

 𝑃𝑃𝐷[𝑛] within the range of these values (Ω(𝑡𝑟𝑃𝐷) and Ω(𝑃𝑃𝐷) respectively) into the 

expression  𝑃𝑛𝑒𝑡 − 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝) − 𝑔𝑉𝐹𝑈(𝜏) that is inside the delta function in Eq. 3. 

Then the probability of each  𝑃𝑛𝑒𝑡 is found by summing the probabilities 

 𝜚𝑡𝑟𝑃𝐷
∗ (𝜏)𝜚𝑃𝑃𝐷

(𝑝)  of each independent way to arrive at that 𝑃𝑛𝑒𝑡. 

 

𝜚𝑃𝑛𝑒𝑡
(𝑃𝑛𝑒𝑡) = ∬ 𝜚𝑡𝑟𝑃𝐷

∗ (𝜏)𝜚𝑃𝑃𝐷
(𝑝)𝛿(𝑃𝑛𝑒𝑡 − 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝)

Ω(𝑡𝑟𝑃𝐷)Ω(𝑃𝑃𝐷)

− 𝑔𝑉𝐹𝑈(𝜏))𝑑𝜏 𝑑𝑝   (3) 

 

 Therefore, as an intermediate step, we attempted to determine the theoretical 

stationary distribution of the recovery intervals in PD, 𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷). We took advantage of 

a trivial fact that for any set of initial conditions and any time series of intrinsic period for 

PD, the observation that in the experimentally recorded time series, the distribution of 

𝑡𝑟𝑃𝐷[𝑛 + 1] is approximately equal to that of 𝑡𝑟𝑃𝐷[𝑛] for large n, because those 

distributions are obtained from sets which consist of n-1 identical elements.   

 

𝑡𝑟𝑃𝐷[0]

↘    
𝑡𝑟𝑃𝐷[1]

↘
𝑡𝑟𝑃𝐷[1]

   
𝑡𝑟𝑃𝐷[2]

↘
𝑡𝑟𝑃𝐷[2]

   

𝑡𝑟𝑃𝐷[3] …

𝑡𝑟𝑃𝐷[3] …
   

𝑡𝑟𝑃𝐷[𝑛]

↘
𝑡𝑟𝑃𝐷[𝑛]

 

⇒ 𝜚𝑡𝑟𝑃𝐷(𝑡𝑟𝑃𝐷[𝑛])

𝑡𝑟𝑃𝐷[𝑛 + 1] ⇒ 𝜚𝑡𝑟𝑃𝐷(𝑡𝑟𝑃𝐷[𝑛+1])
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The arrows indicate that as n goes to infinity, the distribution of the sample values 

approaches the theoretical distribution from which the sample was drawn. In the case of a 

stationary or quasi-stationary distribution, this gives us a self-consistency criterion for the 

distribution of recovery intervals in PD: 

 

𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷[𝑛 + 1]) = 𝜚𝑡𝑟𝑃𝐷

∗ (𝑡𝑟𝑃𝐷[𝑛]) = 𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷)    (4) 

 

 Since we know the dependence of each recovery interval in PD upon the previous 

one, we need to find the distribution of 𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷) which maps to itself by finding each 

independent way of arriving at a given 𝑡𝑟𝑃𝐷. These independent ways are found by 

plugging each possible pair of 𝜏 =  𝑡𝑟𝑃𝐷[𝑛] and  𝑝 =  𝑃𝑃𝐷[𝑛] within the range of these 

values (Ω(𝑡𝑟𝑃𝐷) and Ω(𝑃𝑃𝐷) respectively) into the expression 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝) that is 

inside the delta function in Eq. 5. Then the probability of each arriving at a given 𝑡𝑟𝑃𝐷 is 

found by summing the probabilities 𝜚𝑡𝑟𝑃𝐷
(𝜏)𝜚𝑃𝑃𝐷

(𝑝) of each independent way to arrive 

at that 𝑡𝑟𝑃𝐷[𝑛 + 1]. 

 

𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷) = ∬ 𝜚𝑡𝑟𝑃𝐷

∗ (𝜏)𝜚𝑃𝑃𝐷
(𝑝)𝛿(𝑡𝑟𝑃𝐷 − 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝))𝑑𝜏 𝑑𝑝

Ω(𝑡𝑟𝑃𝐷)Ω(𝑃𝑃𝐷)

     (5) 

 

 Note that the use of 𝜚𝑡𝑟𝑃𝐷
∗ (𝜏) on the right hand side of Eq. 5 implies that we need 

to know the distribution of recovery intervals over the space Ω(𝑡𝑟𝑃𝐷) of possible 𝑡𝑟𝑃𝐷 

values in order to find the distribution. However, we do not actually need to know this 
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distribution a priori because we can resolve the integrative equation (5) iteratively, 

starting from a random distribution  𝜚𝑡𝑟𝑃𝐷

0 (𝑡𝑟𝑃𝐷) (Fig. 10A) in the right-hand side of 

equation (5). We then obtain 𝜚𝑡𝑟𝑃𝐷
1 (𝑡𝑟𝑃𝐷) (Fig. 10B) on the left-side of equation (5), and 

repeat for k iterations until 𝜚𝑡𝑟𝑃𝐷

𝑘 (𝑡𝑟𝑃𝐷) converges to the desired steady state distribution 

𝜚𝑡𝑟𝑃𝐷
∗ (𝑡𝑟𝑃𝐷) (Fig. 10D) that satisfies the self-consistency criterion (4) above. The 

distribution converges if 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝) is smooth and monotonic (Press et al., 2007). 

The integral was approximated by binning the  𝑡𝑟𝑃𝐷 values into equally spaced bins, and 

recalculating the bins after each iteration, so that we obtain a histogram that approximates 

the theoretical distribution. In Fig. 10 we illustrated this process, but instead of plotting 

𝑡𝑟 directly, we plot the associated network period using 𝑃𝑛𝑒𝑡 = 𝑔𝑃𝐷(𝑔𝑉𝐹𝑈(𝜏), 𝑝) +

𝑔𝑉𝐹𝑈(𝜏)  for direct comparison with the experimental data (see Fig. 10D). 

Figure 10. Convergence of the distribution of the recovery intervals 𝜚𝑡𝑟𝑃𝐷
(𝑡𝑟𝑃𝐷) yields 

iterative convergence for periods 𝜚𝑃𝑛𝑒𝑡
(𝑃𝑛𝑒𝑡) in PD.  (A) The map 𝜚𝑡𝑟𝑃𝐷

𝑘 (𝑡𝑟𝑃𝐷) ⇒

𝜚𝑡𝑟𝑃𝐷

𝑘+1 (𝑡𝑟𝑃𝐷) was randomly initialized at k=0, and used to produce the random distribution 

of network periods shown here. (B) After a single iteration (k=1) the distribution shows a 

distinct peak. (C) At k=7, the distribution reaches steady state. (D) The histogram for k=8 

is indistinguishable from that for k=7 in C, indicating that the algorithm has converged to 

a steady state distribution. Moreover, there is a strong resemblance between the 

calculated histogram (solid curve), and the actual experimentally observed histogram 

(dashed curve). 
 

 

 



www.manaraa.com

Experimental verification 

 Using hybrid networks constructed based on the rhythmic crustacean pyloric 

network, we explored how the distribution of the network period responds to simple 

changes in phase response properties of a VFU, which serves the same role in providing 

feedback to the pacemaker PD as LP does in the intact pyloric network. This hybrid 

system then provides rhythmic activity against which our theoretical predictions can be 

compared. Prior to pharmacological isolation of PD, the intact pyloric network 

preparations used for these purposes displayed mean periods of 887±196ms (mean±S.D.; 

n=9 preparations), and were all within the 0.5-2.0Hz cycle frequency range typically 

observed in this system. The average dispersion of period in each intact preparation as 

measured by standard deviation was 15±4ms. Average LP burst duration was 217±66ms, 

representing a burst duty cycle of 0.243±0.040. Following pharmacological isolation of 

PD, the PD neurons then displayed mean periods of 758±116ms, and dispersion of 

39±19ms. 

 We first tested the assumption that the tr/ts curve shape was relatively preserved 

as the period varied in our system. We began by repeatedly measuring the tr/ts curve over 

time of a PD neuron which displayed drift in intrinsic period (Fig. 11A1), then 

normalized each resulting curve by the average intrinsic period 𝑃0 observed immediately 

prior to tr/ts measurement (Fig. 11A2), revealing that the tr/ts curve shape is relatively 

conserved as period changes. Similar conservation of tr/ts curve shape was observed 

when we altered the PD period over a 3x range by sweeping preparation temperature 

(Tang et al., 2010; Soofi et al., 2014) between 10°C and 20°C (data not shown). Then we 

verified that second order resetting was negligible in both PD and LP by comparing the 
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first recovery interval tr[1] with the average of the train tr[1]-tr[N] in Figure 7B, and 

found them to be indistinguishable. 

 
Figure 11. Experimental test of the assumed invariance of the tr/ts curve. (A1) The tr/ts 

curve of one PD was measured four different times over multiple hours, during which an 

increase in intrinsic period occurred. (A2) Plots of the normalized curves show that tr/ts 

curve shape is largely invariant with the observed changes in intrinsic PD period. 
 

 Next we tested our assumption that the PD oscillation periods do not depend on 

previous values (are memoryless) using autocorrelation analysis (Fig. 12A) of 200 

consecutive unperturbed oscillation cycles of the isolated PD (Fig. 12B). Of n=33 

separate preparations analyzed, we found that presence of autocorrelation varied between 

animals. Roughly half (16/33 = 48.5%) of preparations displayed no statistically 

significant autocorrelation (Fig. 12A1), while half (17/33 = 51.5%) displayed statistically 

significant autocorrelation (Fig. 12A2), including one preparation that show a strikingly 

regular cycle-to-cycle alteration between two different period values (pink in Fig. 12A2 

and 12B2). Consequently we will only consider preparations for which there is no 

significant autocorrelation for use in theoretical predictions, because only those 

preparations fulfill the assumptions of our theoretical prediction method. 
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Figure 12. Experimental test for the presence of memory in the intrinsic period of PD. 

(A) Pearson’s autocorrelation function for 33 different preparations (N=200 cycle periods 

each) indicates (A1) lack of significance autocorrelation in 16 preparations but (A2) 

significant autocorrelation of varying strengths present in 17 preparations (A2). 95% 

confidence intervals marked by black horizontal bars. (B) Individual recordings 

underlying these autocorrelations are summarized in plots of their cycle period 

progression over time beneath their respective autocorrelation plots. 
 

 In the intact pyloric network, PD receives synaptic feedback from LP. In the 

hybrid networks, we implemented an approximation of this feedback using an explicit 

dynamic clamp implementation of the linear tr/ts curves exhibited by LP in response to 

synaptic input: 𝑡𝑟𝑉𝐹𝑈 = 𝑔𝑉𝐹𝑈(𝑡𝑠𝑉𝐹𝑈) = 𝑚 ∙ (𝑡𝑠𝑉𝐹𝑈 − 𝑡𝑠𝑉𝐹𝑈
∗ ) + 𝑡𝑟𝑉𝐹𝑈

∗ ;   where 𝑚 is the 

slope and (𝑡𝑟𝑉𝐹𝑈
∗ , 𝑡𝑠𝑉𝐹𝑈

∗ ) is the system’s estimated fixed point (see General Experimental 



www.manaraa.com

Methods). This approximation allowed us to easily manipulate the parameters of the 

feedback. For these networks, the integral equation (5) can be rewritten as follows: 

 

𝜚𝑡𝑟𝑃𝐷

∗ (𝑡𝑟𝑃𝐷) = ∬ 𝜚𝑡𝑟𝑃𝐷

∗ (𝜏)𝜚𝑃𝑃𝐷
(𝑝)𝛿(𝑡𝑟𝑃𝐷[𝑛 + 1]

Ω(𝑡𝑟𝑃𝐷)Ω(𝑃𝑃𝐷)

− 𝑔𝑃𝐷(𝑚 ∙ ( 𝜏 − 𝑡𝑠𝑉𝐹𝑈
∗ ) + 𝑡𝑟𝑉𝐹𝑈

∗ , 𝑝))𝑑𝜏 𝑑𝑝  (6) 

 

 The resulting hybrid networks allow us to validate our theoretical methods in 

networks with a variety of tr/ts curves for which the resulting distribution of periods may 

vary systematically. The stability criterion for a network of two neurons described by tr/ts 

curves coupled with fixed delays is −1 < 𝑔′
𝑃𝐷

(𝑡𝑠𝑃𝐷
∗ ) ∙ 𝑔′

𝑉𝐹𝑈
(𝑡𝑠𝑉𝐹𝑈

∗ ) < 1, as derived by 

calculating the eigenvalues of the map in Eq. 1 when a small perturbation is applied to 

the firing times as in (Cui et al., 2009), where a prime indicates the slope of the tr/ts curve 

and asterisks indicate values at the fixed point. In the map we have plotted in Fig. 8C and 

Figs 9B-D, 𝑔𝑃𝐷(𝑡𝑠𝑃𝐷
∗ ) is plotted versus the inverse function 𝑔𝑉𝐹𝑈

−1 (𝑡𝑠𝑉𝐹𝑈
∗ ). An inverted 

tr/ts curve with a slope of zero is plotted as a vertical line. Using the coordinates at the 

intersection of the curves, this fixed point is stable if the absolute value of the slope of the 

purple curve 𝑔𝑉𝐹𝑈
−1′ (𝑡𝑠𝑉𝐹𝑈

∗ ) is greater than that of the green curve 𝑔′
𝑃𝐷

(𝑡𝑠𝑃𝐷
∗ ) (see 

derivation in section 2 of Supporting Information Text in Thounajam et al., 2014).  

 Measuring the biological LP’s tr/ts curve in n=5 preparations (Fig. 7B3) indicated 

that the biological LP has a tr/ts curve with a slope of approximately zero, similar to 

those in lobster (Homarus americanus) (Sieling et al., 2012).  
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 We then constructed hybrid networks experimentally and assessed the impact of 

VFU tr/ts curve slope on the distribution of network period using inferential statistics. 

The effect of slope on mean period of the distributions was assessed with a one-way 

rANOVA and not significant, F(7,56)=2.28, p=0.12 (Fig. 13A). However, there was a 

significant effect of slope on variability as assessed by a one-way rANOVA of the 

standard deviation of the distributions of period, F(7,56)=6.83, p<0.001. Further analysis 

by planned comparisons reveals that the hybrid network with a VFU of slope zero 

(𝑚 = 0) had significantly lower variability compared to all other nonzero slopes tested 

(Fig. 13B), each representing a large effect size, 𝑚 = −0.4: t(8)=-3.49, p=.008, r=0.78; 

𝑚 = −0.2: t(8)=-2.62, p=0.031, r=0.68; 𝑚 = +0.2: t(8)= -2.43, p=0.041, r=0.65; 

𝑚 = +0.4:  t(8)=-2.69, p=0.028, r=0.69; 𝑚 = +0.6: t(8)=-2.34, p=0.048, r=0.64; 

𝑚 = +0.8: t(8)= -3.11, p=0.014, r=0.74; 𝑚 = +1.0: t(8)= -4.22, p=0.003, r=0.83.  

Figure 13. Experimental change in hybrid network variability with change in tr/ts curve 

slope. Hybrid network period (A) and variability (B, as standard deviation) were assessed 

across VFU tr/ts curve slopes (n=9 experiments). Individual experiments (blue symbols) 

were averaged to give overall results (large blue circles), and statistical tests were run on 

both period and standard deviation. Repeated Measures ANOVA indicated that the effect 



www.manaraa.com

of slope on period was not significant (p > 0.05), but the effect on standard deviation was 

significant (p<0.001). Planned comparisons were used to further test the standard 

deviation of network period for the 𝑚=0 case against the standard deviation at nonzero 

slopes, as this slope gives a minimum stability criterion, and results indicated that 

variability at 𝑚=0 was less than at all other slopes. Error bars reported as +/-1 S.E. 

adjusted for repeated measures data (O’Brien and Cousineau, 2014). 

 

 
 For the subset of hybrid networks constructed from a PD without significant 

autocorrelation in the uncoupled intrinsic cycle periods, we assessed how well the 

predicted distributions of hybrid network period matched the corresponding distributions 

of period observed in the hybrid networks across VFU tr/ts curve slopes. Prediction of the 

mean period of the distribution was highly accurate across VFU slopes, with an average 

error of 1.69% (Fig. 14A) between predicted and observed values. The average error 

between the predicted and observed standard deviation of the distributions had an average 

magnitude of prediction error of 16.63% (Fig. 14B). Most of the observed prediction 

error for variability in network period appears to be relatively independent of VFU tr/ts 

curve slope, such that the relationship of variability to slope is accurately predicted. Both 

the prediction and observation of average network period variability were at a minimum 

when the slope of the VFU tr/ts curve was zero. 
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Figure 14. Comparison of predicted to observed network period and variability. 

Experiments for which predictions and observations of period and variability were made 

and no strong autocorrelation was present are compared (n=4). Individual measurements 

of both observed hybrid network activity (blue) and predicted activity (black) were 

plotted (using the same symbols for results from the same preparation) and averaged 

(large circles), showing good correspondence between predictions and observed hybrid 

network activity. Error bars: +/-1 S.E. for repeated measures data. 

 

An analytic solution for a constant recovery interval in VFU 

 Our theoretical and experimental results indicate that the VFU utilizing a zero 

slope tr/ts curve produces minimum variability in network period. We examined this 

special case and obtained a simple analytical solution. If the slope is equal to zero, the 

recovery interval in the VFU is constant: 𝑡𝑟𝑉𝐹𝑈 = 𝑔𝑉𝐹𝑈(𝑡𝑠𝑉𝐹𝑈) = 𝑡𝑟𝑉𝐹𝑈
∗ , and the map 

would converge to steady-state in one cycle by a single vertical step without need of any 

horizontal paths in Fig. 9B. Consequently the recovery interval in PD depends only upon 

the random intrinsic period of PD with no dependence on previous recovery intervals or 

their distribution 𝜚𝑡𝑟𝑃𝐷
(𝜏). In this case the recovery interval in PD may be represented as 

a function of one variable: 𝑡𝑟𝑃𝐷[𝑛 + 1] = 𝑔𝑃𝐷(𝑏, 𝑃𝑃𝐷[𝑛]) = 𝑔𝑃𝐷̅̅ ̅̅ ̅(𝑃𝑃𝐷[𝑛]) =
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𝑃𝑃𝐷[𝑛] 𝑃0⁄ 𝑔𝑃𝐷(𝑏 𝑃𝑃𝐷[𝑛] 𝑃0⁄ ) and the integral in Eq. 6 takes a very simple form that can 

be solved analytically for the distribution 𝜚𝑃𝑃𝐷
 and tr/ts curve 𝑔𝑃𝐷̅̅ ̅̅ ̅(𝑃𝑃𝐷[𝑛]) by changing 

variables 𝑝 = 𝑔𝑃𝐷̅̅ ̅̅ ̅−1(𝑡𝑟𝑃𝐷) and 𝑑𝑝 = 𝑔𝑃𝐷̅̅ ̅̅ ̅−1′
(𝑡𝑟𝑃𝐷) 𝑑𝑡𝑟𝑃𝐷: 

 

𝜚∗
𝑡𝑟𝑃𝐷

(𝑡𝑟𝑃𝐷) = ∫ 𝜚𝑃𝑃𝐷
(𝑝)𝛿(𝑡𝑟𝑃𝐷 − 𝑔𝑃𝐷̅̅ ̅̅ ̅(𝑝))𝑑𝑝

Ω(𝑃𝑃𝐷)

=  |𝑔𝑃𝐷̅̅ ̅̅ ̅−1′(𝑡𝑟𝑃𝐷)|𝜚𝑃𝑃𝐷
(𝑔𝑃𝐷̅̅ ̅̅ ̅−1(𝑡𝑟𝑃𝐷))        (7) 

 

 Using equation (7) we can find the distribution of PD’s periods when it is coupled 

with the VFU with zero slope. 

 

𝜚𝑃𝑛𝑒𝑡
(𝑃𝑛𝑒𝑡) =  |𝑔𝑃𝐷̅̅ ̅̅ ̅−1′(𝑃𝑛𝑒𝑡 − 𝑡𝑟𝑉𝐹𝑈

∗ )|𝜚𝑃𝑃𝐷
(𝑔𝑃𝐷̅̅ ̅̅ ̅−1(𝑃𝑛𝑒𝑡 − 𝑡𝑟𝑉𝐹𝑈

∗ ))      (8) 

 

Eq. 8 is similar to the distribution of periods in a feedforward network with a stochastic 

element (Tikidji-Hamburyan et al., 2014) and has a simple intuitive explanation. 𝑃𝑛𝑒𝑡 is a 

function of 𝑃𝑃𝐷, and there is a simple rule for scaling the probability density of a function 

of a variable when the probability function of the original variable is known (Larson and 

Shubert, 1979). Eq. 8 uses this rule directly to make the area under the curve for 𝜚𝑃𝑃𝐷
 for 

a given ∆𝑃𝑃𝐷 equal to the area under the curve for 𝜚𝑃𝑛𝑒𝑡
 for a given ∆𝑃𝑛𝑒𝑡 (and shows that 

for the special case given above, the result agrees with known theory). If (and only if) the 

tr/ts curve is flat, the recovery interval in LP/VFU is constant, which removes one source 

of variability by making the stimulus interval in AB/PD constant except for the remaining 
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source of variability, the stochastic period. This intuitively explains the minimum 

variability associated with a zero slope.  

 

DISCUSSION 

Relevance to pyloric circuit 

 A recent review (Lamb and Calabrese, 2012) summarized previous work (Nadim 

et al., 2011) on the role of the LP to PD synapse in stabilizing the AB/PD pacemaker as 

“overriding the influence of perturbations — either slowing down incipient advances or 

speeding up incipient delays.”  In other words, the LP to PD synapse is thought to 

stabilize the mean value of the network period. In this study, using a combination of 

experimental and theoretical methods we have extended the role of the LP to PD synaptic 

feedback to reducing the variability of the network period with dependence upon the tr/ts 

dynamics of LP, and suggest that the constant rebound response characteristic of the tr/ts 

dynamics of LP is optimized to minimize variability in the biological pyloric circuit. 

 The pyloric network has been the focus of much experimental and modeling work 

that has explored the enticing question of how similar stereotypical rhythmic activity can 

arise from neurons and networks of neurons with different combinations of underlying 

properties such as intrinsic membrane conductances and synaptic weights. This non-

uniqueness in activity pattern generation is found at the single neuron level (Golowasch 

and Marder, 1992; Turrigiano et al., 1995; Liu et al., 1998; Prinz et al., 2003a; Taylor et 

al., 2009), extends through the network level (Prinz et al., 2004b; Grashow et al., 2010; 

Daur et al., 2012; Gutierrez et al., 2013), and is likely to involve the coordinated 

regulation of ionic currents and membrane channels (MacLean et al., 2003; Schulz et al., 
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2006, 2007; Goaillard et al., 2009; Hudson and Prinz, 2010; Zhao and Golowasch, 2012). 

A frequently used strategy to evaluate the presence of such non-uniqueness of neuron or 

network configurations that produce similar functional activity proceeds by first 

obtaining steady state estimates of the activity characteristics of a given population of 

neurons or networks, then assessing whether these estimates of activity characteristics 

conform to some stereotypical pattern or outcome. For biological experiments, this is 

accomplished by averaging variable network output to obtain estimates of steady state 

network function. For model data, steady state network activity intervals of simulated 

activity are typically obtained directly, without averaging, as simulated activity will lack 

the variability present in a biological neuronal system (Faisal et al., 2008) unless such 

variability is programmed into the model, which is an uncommon practice. Our results 

indicate that if insights into how networks are adapted to variability are not integrated 

into such studies—particularly in modeling studies—it is possible that the examination of 

steady state output alone may result in false positives when classifying what constitutes a 

biologically plausible network configuration. In other words, network configurations that 

are both adapted to produce a stereotypical activity pattern and optimized for variability 

may be a subset of all network configurations that produce a stereotypical activity 

pattern. 

 This point is especially compelling in light of one recent study that has found that 

relationships can exist between individual cellular conductances and neuronal phase 

response dynamics (Soofi and Prinz, 2015), which implies that it may be possible to trace 

the locus of network adaptations for rhythmic variability back to ionic current expression. 

This insight makes it tempting to speculate, for instance, that a zero slope tr/ts curve in 
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LP might depend upon a similar association as was shown in another study to occur 

between animal-to-animal preservation of PD rebound response following inhibition and 

correlation of the ionic currents transient A-type current 𝐼𝐴 and hyperpolarization-

activated current 𝐼𝐻 (Zhao and Golowasch, 2012). But future studies will be required to 

address these kinds of questions and may not prove trivial, as ionic current correlations 

have not always proven intuitive, and at least two studies have demonstrated that there 

are likely to be other ionic currents involved in a pyloric neuron’s rebound interval in 

addition to 𝐼𝐴 and 𝐼𝐻 (Taylor et al., 2009; Zhao and Golowasch, 2012).  

 One further question that remains unanswered is whether the pyloric circuit 

utilizes variability as a beneficial feature to provide flexibility to some behavioral goal in 

digestion, as has been suggested for the circuit underlying Aplysia feeding (Horn et al., 

2004), or if variability in pyloric pattern generation is simply a "good enough" solution 

that generates sufficiently functional patterned activity with a neuronal network of 

minimal complexity and associated metabolic cost (Selverston et al., 2000; Hooper, 

2004). Addressing this question directly is beyond the scope of this paper, but it is 

interesting that our results, combined with previous findings, imply that in at least two 

respects the pyloric circuit is configured in a manner that optimally minimizes rhythmic 

variability: in terms of both its predominance of synaptic inhibition (Selverston et al., 

2000; Sieling et al., 2009) and LP feedback. It may be the case that—because the pyloric 

rhythm interacts with other CPGs within the stomatogastric nervous system such as the 

gastric mill rhythm—a pyloric network configuration that confers minimal rhythmic 

variability is necessary for the circuit to maintain functional integrity in the face of inputs 

from other networks that operate on differing timescales. 
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 There are likely other intrinsic dynamics of neuronal networks that impact 

network activity variability, such as might occur due to changes in synaptic feedback 

burst width. In this study we used a simplified form of feedback to the pacemaker by 

fixing the duration of the input at a constant value representing the mean burst width 

observed in the biological LP, but in a future study we plan to explore the implications of 

this simplification on network activity variability by allowing this burst width to vary. 

 

Alternative approaches 

 One could simply iterate the map in Equation 2 starting from an arbitrary initial 

condition to obtain the stationary predicted distribution of recovery intervals, drawing the 

period from the measures distribution with the appropriate probability on each iteration. 

That approach is related to the one presented in the paper, but the solution could depend 

upon initial conditions if there are multiple fixed points (see next section). 

 An earlier paper (Thounaojam et al., 2014) took the approach of recreating the 

histogram of the firing intervals by iterating exactly the map described in Equation 2 

under two different assumptions. The histogram is an approximation of the stationary 

probability distribution of the intervals. The first assumption was that the period was 

drawn from a Gaussian distribution and the second assumption was that the period was a 

history-dependent random process. For that study, the assumption of history dependence 

gave much better results because the number and stability of attractors appeared to vary 

slowly. The neurons in that study were not bursting neurons like the neuron utilized in 

this study, which may explain why history dependence was critical in that study but not 
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in ours. The variety of the number and types of fixed points in the tr/ts maps (see next 

section) may also explain part of the difference. 

 Many other studies (Sieling et al., 2009; Ermentrout et al., 2011; Thounaojam et 

al., 2014) assume that the intrinsic period is constant but that noise causes the phase of 

the oscillation to be decoupled from the elapsed time, such that the stimulus interval ts is 

no longer a reliable indicator of the actual phase at which a neuron receives an input. In 

that case, the phase variable acquires a stochastic component that is added to the map at 

the time an input is received, so that effectively the phase resetting has an additive 

stochastic component. Adding noise to the phase resetting was effective in (Sieling et al., 

2009) but not (Thounaojam et al., 2014). In this study, we can measure the variability in 

the period, and it is greater than the variability in the observed phase resetting, so we 

chose to address variability in the intrinsic period instead. 

 

Limitations of the methodology 

 In the examples that we have presented, each pair of tr/ts curves has a single 

intersection, and that intersection corresponds to a fixed point associated with an 

alternating firing pattern, which is slightly different depending upon which tr/ts curve 

associated with a particular value of the intrinsic period in PD is considered. The fixed 

point can be considered to “wander” in lockstep with the random variable for the intrinsic 

period. In our examples, the fixed point is always stable and attracting because the slope 

of the dark purple curve in Fig. 9B, 9C, and 9D is always greater than the light green 

curve (Thounaojam et al., 2014), which pushes trajectories back toward the fixed point 

(Fig. 9B).  Rigorously, the assumption of an alternating firing pattern requires that there 

is an odd number of stable fixed points in the tr/ts map and that the stable fixed points 
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outnumber the unstable ones, so that the trajectory is never pushed to the ends of the map 

requiring a phase slip (Thounaojam et al., 2014). However, if phase slips are infrequent 

this assumption can be violated without degrading the quality of the results. 

 In the presence of second order resetting, the experimental method we employed 

to measure the tr/ts curves is not valid. Beyond the fact that second order resetting is not 

directly measurable using a multiple-pulse PRC protocol, the theoretical methods 

employed here assume tr/ts curves are equivalent to those constructed from a single-

stimulus PRC protocol. With second order resetting the map methods become much more 

complicated (Oprisan and Canavier, 2001). 

 Another limitation of the theoretical method is that in its present form, it only 

strictly applies to intrinsic oscillators whose intrinsic period has no history dependence. 

Only half of the experimental preparations met this criterion for analysis by our 

theoretical methods. We have devised a map that takes into account the history 

dependence of the period (Thounaojam et al., 2014). An extension of the theory presented 

herein to that case remains to be done. Several preparations show such history 

dependence (Netoff et al., 2005; Deister et al., 2013; Thounaojam et al., 2014). This 

history dependence has been hypothesized to play a role in active decorrelation in the 

basal ganglia (Wilson, 2013), so such an extension may have broad applicability.  

 One source of history dependence is gastric modulation (Clemens et al., 1998; 

Bucher et al., 2006). We have not proved that a zero slope of the LP tr/ts curve decreases 

variability in the presence of sources of history dependence like gastric modulation, but it 

seems likely that removing a source of variability in this manner would tend to decrease 

the total variability under any circumstances. 



www.manaraa.com

 

Relevance to general theory of central pattern generation 

 To our knowledge this is the first study to have examined a biological neuronal 

network system to assess the role of the intrinsic phase dynamics of its feedback neurons 

towards regularity in rhythm generation. Due to the relatively recent discovery that tr/ts 

techniques can be extended to analyze the phase response dynamics of rhythmic networks 

that include non-endogenously bursting neurons, it is not yet known how many other 

pattern generating systems tend to be optimized in this way for regularity like the pyloric 

network. Further studies can elucidate this. 

 The methods presented in this paper are general and can be applied to two 

oscillators or two PIR elements, in addition to a circuit with one oscillator and one PIR 

element as presented herein. In our study, matching the particular shape of the 

distribution of intrinsic periods was important in order to obtain a good match to the data. 

However, the qualitative effect on the width of the distribution of any feedback strategy 

can be determined by calculating its effect on a Gaussian distribution, for example. This 

allows the determination of optimal feedback strategies for other central pattern 

generators driven by an intrinsically bursting kernel, for example the mammalian 

respiratory central pattern generator (Marder and Bucher, 2001). 
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CHAPTER 3: CYCLE TO CYCLE BURST WIDTH TIMING IN A 

CENTRAL PATTERN GENERATOR AND CYCLE PERIOD 

VARIABILITY 
 

 

INTRODUCTION 

 Central pattern generators underlie repetitive motor pattern expression, and study 

of these systems has taught us much about seemingly disparate questions about network 

reliability and variability, how stereotypical network activity arises from the interplay of 

underlying neuron and synapse properties, and how stereotypical activity patterns are 

preserved in the face of changes to the network. The pyloric network of the decapod 

crustacean is a central pattern generator that has been studied in all of these contexts, so 

is well suited for formulating questions by integrating previous findings into new 

insights. Here we consider and attempt to integrate two threads of research in the pyloric 

network: first, that network feedback to a pyloric central pattern generator has been 

shown to stabilize network period and do so optimally based upon at least two inherent 

features of their network configuration (Selverston et al., 2000; Sieling et al., 2009; 

Nadim et al., 2011; Hooper et al., 2015); and second, that pyloric network activity has 

also been shown to undergo phase maintenance under a variety of changes imposed on a 

network, such as altered injection current and temperature, both in vitro and in vivo 

(Hooper, 1997a, 1997b; Katz et al., 2004; Tang et al., 2010; Soofi et al., 2014). In 

particular, what has not yet been studied to our knowledge is how rapidly or slowly this 

phase maintenance occurs. If phase maintenance is rapid, a natural question follows: 

could it play a role in stabilizing the pyloric network? Because recent work has 
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demonstrated that biological pyloric network configuration optimally minimizes rhythmic 

period variability in two studied features of network composition: the predominance of 

inhibitory synapses (Selverston et al., 2000; Sieling et al., 2009) and the phase response 

dynamics of synaptic feedback to the pacemaker (Hooper et al., 2015), any systematic 

patterns of burst width regulation would seem likely candidates for playing a similar role. 

These are the questions we will attempt to address in this study. 

  The pyloric network’s activity consists of a stereotyped triphasic bursting pattern 

driven by the anterior burster/pyloric dilator (AB/PD) pacemaker complex (Russell and 

Hartline, 1978; Bal et al., 1988; Harris-Warrick and Marder, 1991), which itself consists 

of an electrically coupled group of one AB neuron and two PD neurons, all of which 

burst in synchrony and produce the first phase of the rhythm (Fig. 15B,C,D in green). 

The AB/PD projects inhibitory synapses to two follower neuron groups within the pyloric 

network (fig. 15C, synapses with open circles are cholinergic, synapses with filled circles 

are glutamatergic). The target neurons of these projections are the lateral pyloric neuron 

(LP, one per STG) and the pyloric neurons (PY, 5-6 each per STG). Functionally these 

follower neurons are distinguished by their participation in bursting network oscillation 

via post-inhibitory rebound, meaning that they fire bursts following the application and 

removal of inhibitory synaptic input. In this way LP and PY are conditional bursters at 

the pyloric network’s oscillation frequency, and absent synaptic inhibition are either 

silent or spike tonically (Fig. 15D). 
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Figure 15. Crustacean STNS (A). The Stomatogastric Ganglion (STG) contains the 

somata of the pyloric network, while extracellular recordings can be taken from the motor 

nerves: lateroventricular nerve (lvn, contains motor nerves for LP [red], PY [blue], and 

PD[green]), and the nerves of PY and PD (pyn and pdn). Adapted from Marder and 

Bucher, 2007. Recorded extracellular traces displaying triphasic rhythm on lvn (B). The 

intact network pyloric network (C) generates a triphasic bursting rhythm by utilizing a 

pacemaker neuron group (AB/PD), which leads the rhythm, and two types of follower 

neurons (LP and PY) that burst in response to post-inhibitory rebound imposed by 

synaptic input from AB/PD. Reciprocal inhibition between LP and PY and synaptic 

feedback from LP to PY, as well as the presence of synaptic depression, are important 

features of this circuit. Bath application of PTX (D) pharmacologically blocks 

glutamatergic synapses in the pyloric network, which has the effect of synaptically 

isolating AB/PD, and minimizing synaptic inhibition of the follower neurons. The 

resulting network activity reveals the intrinsic rhythmicity of AB/PD along with the lack 

of propensity of LP or PY to burst on their own on a pyloric timescale.  

 

 Following exploration of the pyloric network’s cycle by cycle phase maintenance 

properties, we use insights gained to inform three hybrid network configurations 

constructed using the dynamic clamp. The first two strategies were based upon 
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observations of the intact pyloric network (see Results), while the third was a theoretical 

strategy chosen because it was mathematically complementary to the experimentally 

inspired strategies. 

 

METHODS 

General experimental methods 

 Adult C. Borealis crabs were obtained via overnight shipping from The Fresh 

Lobster Company (Gloucester, MA) and maintained in artificial seawater at 10°C. Crabs 

were anesthetized in ice for 30 minutes prior to dissection. The STG was dissected as 

described previously (Gutierrez and Grashow, 2009) and pinned out in a Sylgard lined 

dish containing chilled physiological saline (in mM: 440 NaCl, 11 KCl, 13 CaCl2, 26 

MgCl2, 12.4 Trizma base, 5.3 Maleic acid, pH 7.45 @ 13°C). The STG was desheathed 

and Vaseline wells were formed around the lateral ventricular nerves. All preparations 

were perfused with physiological saline maintained at 12-14°C. All electrophysiological 

data were digitized on a Digidata 1322A (Axon Instruments) with an 84μs sampling 

interval and recorded using Clampex 9 software (Axon Instruments). Extracellular 

recordings were made from the wells using stainless steel electrodes inserted into the 

Sylgard, and signals were filtered and amplified by an A-M Systems Model 1800. 

Intracellular recordings were made with an Axoclamp 2B amplifier (Axon Instruments) 

in discontinuous current-clamp mode using glass microelectrodes (10-20 MΩ) filled with 

a solution of 0.6 M K2SO4 and 20 mM KCl. PD neurons were identified with standard 

procedures for C. borealis (Selverston and Moulins, 1976; Harris-Warrick, 1992) then 

pharmacologically isolated from glutamatergic synaptic input from LP using 
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physiological saline containing 10
-5

 M Picrotoxin (PTX, Sigma-Aldrich) (Bidaut, 1980). 

Dynamic clamp (Dorval et al., 2001) protocols were programmed in house and run with 

an update rate of 50 μs on a computer with a NI PCI-6052E data acquisition card 

(National Instruments). In all dynamic clamp protocols, burst onset of rhythmic 

biological membrane voltage traces is defined as occurring when the rising phase of the 

slow oscillation crosses a voltage threshold. This threshold was chosen to fall where the 

rising phase of the slow oscillation was steepest in order to ensure maximum tolerance to 

baseline drift, and the slow oscillation trace was isolated from spikes by filtering the 

membrane voltage trace according to 𝑉𝑓𝑖𝑙𝑡(𝑡 + ∆𝑡) = 𝑉𝑓𝑖𝑙𝑡(𝑡) + [𝑉𝑚(𝑡 + ∆𝑡) −

𝑉𝑓𝑖𝑙𝑡(𝑡)]∆𝑡/𝜏𝑓𝑖𝑙𝑡, where 𝑉𝑓𝑖𝑙𝑡 is the filtered membrane voltage, 𝑉𝑚 is the unfiltered 

membrane voltage, ∆𝑡 is the dynamic clamp time step of  50 μs , and 𝜏𝑓𝑖𝑙𝑡 = 50 ms. 

Analysis of all recordings was performed offline in Spike2 (Cambridge Electronic 

Design). 

 

Hybrid networks  

 Using the dynamic clamp and pharmacologically isolated biological PDs from 

N=12 experimental preparations, we constructed hybrid network in each preparation that 

approximate intact pyloric network activity (Fig. 16A) using three different forms of a 

virtual feedback unit (VFU) model representing LP (Hooper et al., 2015), randomizing 

presentation order of these forms across preparations. Briefly, a VFU model is designed 

to simulate LP synaptic feedback to PD (Fig. 16B) by representing the synaptic input 

simply as a square conductance pulse of duration 𝐵𝑉𝐹𝑈 that occurs at a response interval 

𝑡𝑟𝑉𝐹𝑈 following the last received synaptic input from PD (Fig. 16D). In general, the 
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response interval 𝑡𝑟 is a function of the stimulus interval 𝑡𝑠—the interval between a 

neuron’s previous burst and the receipt of synaptic input (Fig. 16D). This 𝑡𝑟/𝑡𝑠 relation is 

a generalized extension of phase response analysis that can be applied to neurons with 

non-endogenous oscillations of the LP (Sieling et al., 2012), in addition to being 

applicable to neurons with the endogenous oscillation required by conventional phase 

response theory (Ermentrout, 1996; Schultheiss et al., 2012). But because our previous 

work has shown that 𝑡𝑟 is independent of 𝑡𝑠 in LP, here all VFUs utilized a constant 

response interval 𝑡𝑟𝑉𝐹𝑈
∗  based upon intact LP activity, i.e. a tr/ts curve with slope zero 

(Fig. 16C). This fixed response interval reproduces the response interval of LP scaled to 

account for any change in period between intact network activity measurement and 

hybrid network formation, such that 𝑡𝑟𝑉𝐹𝑈
∗ = 𝑃0 ∙ ɸ𝑟̅̅̅̅

𝐿𝑃, where the mean period of PD just 

prior to hybrid network formation 𝑃0 is used as an estimate of the hybrid network period 

𝑃𝐻𝑌𝐵, and ɸ𝑟̅̅̅̅
𝐿𝑃 is the mean response phase of LP in the intact pyloric network ɸ𝑟̅̅̅̅

𝐿𝑃 =

𝑡�̅�𝐿𝑃/𝑃𝐼𝑁𝑇. All interval means were assessed over 40 cycles. 

 Instead of synaptic input from PD being mediated by actual or simulated synaptic 

current as a biological or model neuron would, respectively, a VFU estimates the onset of 

received synaptic input as coincident with burst onset of PD, defined as dynamic clamp 

detection of threshold crossing in PD’s membrane voltage. Other aspects of the PD to LP 

synapse such as synaptic strength and synaptic input duration are implicitly accounted for 

by the VFU, since the VFU is designed to respond to PD input with timing identical to 

that of LP’s response to PD.  

 The VFU to biological PD artificial synapse consisted of a 50nS virtual 

conductance with instantaneous activation and a reversal potential of -90mV. Both 
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selected values of conductance and reversal potential were based upon previous voltage 

clamp measurements from this synapse (Thirumalai, 2002; Archila and Prinz, 2012; 

Archila, 2013).

Figure 16. Virtual Feedback Unit (VFU) models of LP are (A) based upon LP’s activity 

intervals trLP and tsLP measured from extracellular recordings of intact pyloric network 

prior to pharmacological dissection of the network. Corresponding intact network periods 

(PINT) are measured between first spikes of bursts in PD. Using the dynamic clamp to 

inject artificial conductance in PD, the feedback role of LP is reprised by the VFU by 
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directly reproducing equivalent timing of intervals measured in LP, including (C) tr/ts 

relationship and (D)  burst duration BVFU. 

 

VFU burst width regulation strategies 

 In each preparation we implemented three different forms of hybrid network 

distinguished by their feedback equation governing VFU burst width 𝐵𝑉𝐹𝑈 (Fig. 16D). 

Our first synaptic feedback strategy is implemented as a VFU with fixed duration 

feedback burst 𝐵𝑉𝐹𝑈 (figure 17A), represented by the recurrence:  

 

 𝐵𝑉𝐹𝑈[𝑛 + 1] = 𝐵𝑉𝐹𝑈[𝑛] = �̂�𝐿𝑃 = 𝐷𝐶̅̅ ̅̅
𝐿𝑃 ∙ 𝑃0  (1) 

 

where the equality of 𝐵𝑉𝐹𝑈 as the index is iterated indicates that the quantity is 

independent of network cycle n. The fixed value �̂�𝐿𝑃 is the burst duration of the 

biological LP, scaled to account for any change in period between intact pyloric network 

activity measurement and hybrid network formation, and is determined using both the 

mean duty cycle of LP’s burst width in the intact pyloric network 𝐷𝐶̅̅ ̅̅
𝐿𝑃 = �̅�𝐿𝑃/𝑃𝐼𝑁𝑇 , and 

the mean period of the isolated PD just prior to establishing the hybrid network 𝑃0.  

 Our next synaptic feedback strategy scales VFU burst width proportionally with 

spontaneous changes in network period on a cycle-by-cycle basis. We refer to this as a 

directly proportional burst regulation strategy (figure 17B). Because of causality VFU 

burst width is calculated by scaling the LP duty cycle by the preceding network period, 

according to the recurrence: 

 

 𝐵𝑉𝐹𝑈[𝑛 + 1] =  𝐷𝐶̅̅ ̅̅
𝐿𝑃 ∙ 𝑃𝐻𝑌𝐵[𝑛] (2)
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 Our third strategy performs the inverse of the directly proportional DC burst, 

which we term the inversely proportional burst regulation strategy (figure 17C). It is 

calculated as follows: 

 

 𝐵𝑉𝐹𝑈[𝑛 + 1] = (𝐷𝐶̅̅ ̅̅
𝐿𝑃 ∙ 𝑃0) 𝑃0/𝑃𝐻𝑌𝐵[𝑛] = �̂�𝐿𝑃𝑃0/𝑃𝐻𝑌𝐵[𝑛] (3) 

 

 Note that for all three VFU burst regulation strategies, a spontaneous network 

cycle period 𝑃𝐻𝑌𝐵 = 𝑃0 results in the generation of a VFU burst width �̂�𝐿𝑃, which will 

also be the mean VFU burst generated in the absence of any slow drift in period. 
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Figure 17. Inhibitory synaptic feedback burst width strategies: (A) fixed burst duration 

(eqn. 6), (B) directly proportional burst duration (eqn. 7), (C) inversely proportional burst 

duration (eqn. 8). Heavy blue arrowed bars above hybrid network period PHYB show 

spontaneous increases in period, while corresponding heavy blue arrowed bars above 

VFU bursts show resulting changes in VFU burst width BVFU due to regulation strategy. 

Hybrid network activity intervals that changes in BVFU may impact are illustrated above 

as period PHYB, network PD burst width BPD, and network PD interburst-interval IBIPD.
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Statistical Analysis 

 Statistical relationships between pyloric network period and LP burst width were 

assessed in N=20 intact pyloric preparations using the statistics and signal processing 

toolboxes in MATLAB. Correlation was calculated on sequences of 50 consecutive 

cycles as Pearson’s correlation coefficient r with corresponding p-values calculated 

assuming a two-tailed t-distribution. Following standardization of the same sequences, 

cross-correlation functions were calculated for 20 lags in each direction for a total of 41 

lags (including zero lag) and normalized. Autocorrelation functions of each sequence’s 

pyloric network period were then calculated using 20 lags. 95% confidence intervals 

were estimated in the standard manner as ±1.96/√𝑛, where 𝑛 is the number of cycle 

periods in each sequence. Optimal predictors for LP burst width were constructed using 

combinations of lagged pyloric network periods and optimized to maximize correlation 

of the predictor to LP burst width using unconstrained nonlinear optimization. 

 Inferential statistics on hybrid network activity was performed using the analytics 

software package SPSS 21 (IBM). Required sample sizes were calculated a priori using 

GPower 3.1 (Faul et al., 2007) and four initial datasets, which were included in the final 

analysis. In all statistical tests the same hybrid network activity features (period 𝑃𝐻𝑌𝐵, 

network PD burst width 𝐵𝑃𝐷, network PD interburst-interval 𝐼𝐵𝐼𝑃𝐷 = 𝑃𝐻𝑌𝐵 − 𝐵𝑃𝐷, and 

standard deviation (SD) of each) were measured under all conditions of VFU burst width 

regulation strategy from the same experimental preparation and accordingly treated as 

repeated measures data for analysis. One-way repeated measures analysis of variance 

(rANOVA) was performed for each hybrid network activity feature, and if an effect was 

found to be present, Bonferroni corrected pairwise comparisons were made between VFU 
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burst width regulation strategies (Maxwell, 1980). Standard errors were calculated with 

correction for repeated measures designs (O’Brien and Cousineau, 2014). 

 

RESULTS 

Cycle-by-cycle LP burst regulation in the intact pyloric network 

 The pyloric network has been long known to exhibit phase maintenance of 

activity intervals such as LP burst duration with imposed changes in network period 

(Hooper, 1997a, 1997b; Katz et al., 2004; Tang et al., 2010; Soofi et al., 2014), meaning 

that activity intervals such as LP burst width scale with broad changes imposed on 

network period. But much less is known of the relationship between period and burst 

duration during ongoing, spontaneous variation in network period. To examine the extent 

to which phase maintenance is a factor in more rapid transitions in network activity, i.e. 

in activity fluctuations on a cycle-by-cycle basis, we measured activity from N=20 intact 

pyloric networks and examined data for intact pyloric network period PINT and LP burst 

width BLP. Among these preparations, most (15/20 = 75%) experienced statistically 

significant phase maintenance of BLP as assessed by correlation analysis (Fig. 

18A1,A2,B1,B2). These preparations further exhibited large, statistically significant 

peaks in their cross-correlation function at lag 0 (Fig. 18A5,B5), indicating that network 

period and LP burst width are strongly correlated within individual cycles. This can be 

seen in coordinated fluctuations of standardized values for PINT and BLP in plots of 

successive activity intervals (Fig. 18A3). This large peak in cross-correlation at lag 0 was 

observed both in preparations without autocorrelation (Fig. 18A3-5, 8/20 = 40% of 
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preparations), as well as in preparations that exhibited autocorrelation of network period 

(Fig. 18B-5, 7/20 = 35% of preparations). 

 The remaining preparations (5/20 = 25%, Fig. 18C) exhibited no cycle-by-cycle 

regulation of burst width in terms of either overall correlation (Fig. 18C1,2) or cross-

correlation (Fig. 18C5), while expressing no significant autocorrelation in network period 

(Fig. 18C4). No hybrid networks were observed with significant autocorrelation and 

fixed BLP. 

 

 
Figure 18. Statistical relationship between intact pyloric network period PINT and LP 

burst width BLP, assessed in N=20 preparations. Most observed networks exhibited (A1) 

phase maintenance with a statistically significant positive Pearson’s correlation 

coefficient r between PINT and BLP over n=50 consecutive network cycles, which is also 

evident when (A2) PINT and BLP are plotted against each other after converting to their 

standardized values zP-INT and zB-LP. (A3) Plots of the progression of zP-INT and zB-LP 

indicate that changes in PINT are closely matched by changes in BLP in the same cycle. In 

(A4) preparations that exhibit both phase maintenance and no autocorrelation (8/20 = 
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40%), (A5) the apparent cycle-by-cycle phase maintenance of A3 is revealed to be 

statistically significant by a single positive peak at lag 0 of the cross-correlation function. 

(B1-B5) Preparations observed to exhibit significant autocorrelation (7/20 = 35%) 

appeared to exhibit phase maintenance and possess strong peaks a zero-lag, similar to 

preparations in A1-A5. (C1-C5) Some preparations (5/20 = 25%) exhibited no phase 

maintenance such that BLP remained relatively fixed independent of PINT. 

 

To estimate how many cycles are of intact pyloric network activity are of primary 

importance in describing the observed relationship between PINT and BLP in preparations 

that exhibited significant cross-correlation, we constructed three predictors of each 

sequence BLP[n] based upon linear combinations of one, two, or three sequential network 

periods. The first predictor θ0 was simply set to the intrinsic network periods containing 

concurrent LP bursts being predicted, such that, 

  

 𝜃0 = 𝑃𝐼𝑁𝑇[𝑛] (4) 

 

Two additional predictors θ1 and θ2 were constructed using linear combinations of 

multiple periods, such that,  

 

 𝜃1 = 𝛽0𝑃𝐼𝑁𝑇[𝑛] + 𝛽1𝑃𝐼𝑁𝑇[𝑛 − 1] (5) 

 𝜃2 = 𝛽0𝑃𝐼𝑁𝑇[𝑛] + 𝛽1𝑃𝐼𝑁𝑇[𝑛 − 1] + 𝛽2𝑃𝐼𝑁𝑇[𝑛 − 2] (6) 

 

where parameters β were optimized to yield maximum correlation of the predictor with 

BLP[n] (see Methods). These predictor sequences were then correlated with BLP[n] (Fig. 

19A), which revealed that the addition of more than one period term to the predictor only 

yielded a marginal increase in correlation to BLP in all but one preparation. This result 

combined with a lack of consistent sign for any of the added parameters beyond β0 (Fig. 
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19B) indicates that across preparations, feedback burst width regulation is most strongly 

and consistently understood as being correlated with a single network cycle period. 

 

Figure 19. Comparison of correlations of optimal network attribute predictors to LP burst 

width (BLP) and corresponding parameters of the predictors show that the intact pyloric 

network’s BLP is strongly proportional to a single network cycle period. (A) Three 

predictors θ0, θ1, and θ2 that utilize combinations of either one, two, or three intact 

network periods (PINT), respectively, are tested for their correlation with BLP in N=8 

experimental preparations. In all but one preparation (preparation n=7) the use of 

additional preceding cycle periods in the predictor results in only marginal increase in 

correlation with BLP. (B) Optimized parameters of the predictors θ1 and θ2 are found 
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using unconstrained optimization to maximize correlation of the predictor with BLP. 

There are no strong relationships between these parameters across preparations. 

 

 Based upon these results, we formulated hybrid networks in N = 12 preparations. 

In each preparation we connected an pharmacologically isolated AB/PD with a dynamic 

clamp implemented VFU of one of three strategies implemented to set burst width in 

each cycle: fixed burst duration, directly proportional burst duration, and inversely 

proportional burst duration (see Methods). The fixed burst duration strategy kept VFU 

burst duration fixed at a value based upon the intact network’s LP burst width. The 

directly proportional burst width strategy scaled VFU burst width proportionally with 

measured changes in hybrid network period, which is apparent by observing measured 

intervals of hybrid network period and VFU burst width  (Fig. 20). Given an accurate 

estimate of PHYB, these VFUs tend to generate average burst duration equal to that of the 

fixed burst duration VFU implemented in the same preparation. 
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Figure 20. Hybrid network implementation of an AB/PD coupled to a VFU with a 

directly proportional burst width strategy, with design inspired by observed cycle by 

cycle phase maintenance in intact pyloric networks. The dynamic clamp implemented 

VFU burst width BVFU is chosen to be the same fraction of the preceding network period 

as mean LP burst width was of the mean intact pyloric network period. This hybrid 

network exhibited autocorrelation (or memory) in its period PHYB, as characterized by the 

slow drifts in period lasting longer than one cycle, and illustrates the directly proportional 

changes of BVFU (bottom) with spontaneous changes in PHYB.  

 

 Finally, in the same preparations we implemented VFUs utilizing an inversely 

proportional burst width strategy, formulated to implement anti-phase maintenance on a 

cycle by cycle basis. Implementation of this strategy in the same preparation as Fig. 20 

created networks that exhibited VFU burst width BVFU changes opposite in sign of those 

observed in network period PHYB (Fig. 21).  
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Figure 21. Hybrid network implementation of a AB/PD coupled to a VFU with a 

inversely proportional burst width strategy. With this strategy BVFU changes occur 

opposite to those of the directly proportional strategy of Fig. 5, but are designed to be 

delivered with the same mean value.  

 

Test of mean activity intervals in hybrid networks 

 Next we wanted to determine if type of burst width feedback strategy had an 

effect on network period variability, but first we verified that the construction of our 

different VFU feedback strategies did not yield statistically different mean hybrid 

network activity intervals as measured by: hybrid network period PHYB, network PD 

interburst-interval IBIPD, and network PD burst width BPD (see Fig. 20). Any substantial 

differences in these measures could confound our comparison of variability of these same 

measures. Separate statistical analyses for each interval across VFU burst width strategies 
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and preparations as a repeated measures analysis of variance (rANOVA) indicated that 

there was no statistically significant difference in mean BVFU delivered by each burst 

width strategy F(2,22) = 0.079, p = 0.924, as illustrated by plotting the individual 

experiment means (Fig. 22A1) as well as the grand means each strategy across 

preparations (Fig. 22B1). Any small differences in BVFU across strategies are due to either 

nonstationary oscillation period or estimation error of the hybrid network period. There 

was also no statistically significant effect on hybrid network period PHYB observed with 

F(2,22) = 1.548, p = 0.235, as illustrated by plotting the individual experiment means of 

each VFU burst width strategy in each experiment (Fig. 22B1) as well as the grand means 

for all experiments (Fig. 22B2). Likewise there was no statistically significant effect of 

VFU burst width strategy employed on IBIPD as assessed by rANOVA, F(2,22) = 0.846, 

p = 0.442 (Fig. 21C), or BPD with F(2,22) = 0.095, p = 0.910 (Fig. 22D).  
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Figure 22. Statistical analysis of hybrid network activity intervals BVFU, PHYB, IBIPD, and 

BPD. We found no statistically significant differences using rANOVA across VFU burst 

width strategy employed for VFU burst width BVFU (A), hybrid network PD period PHYB  

(B), network PD interburst-interval IBIPD  (C), and network PD burst width BPD (D). Top 

subpanels (1) show mean values of each measure observed for each VFU burst width 

strategy in each individual experimental preparation, while bottom subpanels (2) show 

grand means across all experiments. Error bars represent SE adjusted for repeated 

measures data. 

 

Test of variability in hybrid networks 

 We then examined variability of the same activity measures in our hybrid 

networks (quantified as standard deviation σ) to determine if network variability depends 

upon VFU burst width strategy. Beginning with the variability of hybrid network period 

σP-HYB, using rANOVA we found that there was a statistically significant main effect of 

VFU burst width strategy, F(2,22) = 11.23, p < 0.001 (Fig. 23A). Bonferroni corrected 
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two-tailed pairwise comparisons found that the directly proportional VFU burst width 

strategy resulted in significantly lower variability in PHYB than in each of the other two 

burst width strategies. Specifically, a comparison of the directly proportional strategy 

mean period variability to the fixed duration strategy mean period variability was 

significant with t(11) = -3.37, p = 0.02; a comparison of the directly proportional strategy 

mean period variability to the inversely proportional strategy mean period variability was 

significant with t(11) = -4.16, p = 0.005; and a comparison of fixed duration strategy 

mean period variability to the inversely proportional strategy mean period variability was 

not significant with t(11) = -1.97, p = 0.22. 

 Other measures of activity variability were not significantly different, for network 

PD interburst-interval variability σIBI-PD with F(2,22) = 3.27, p = 0.057 (Fig. 23B), and for 

network PD burst width variability σB-PD with (F2,22) = 0.24, p = 0.79 (Fig. 23C).   
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Figure 23. Statistical analysis of hybrid network variability observed in PHYB, IBIPD, and 

BPD. Analysis by rANOVA and Bonferonni corrected pairwise comparisons reveal a 

statistically significant difference in standard deviation of PHYB  (σP-HYB) (A) due to VFU 

burst width strategy, with the directly proportional VFU burst width strategy having 

significantly less variability than both alternative strategies. Neither standard deviation of 

PHYB (σIBI-PD) nor standard deviation of BPD (σB-PD) exhibited statistically significant 

differences due to VFU burst width strategy. Error bars represent SE adjusted for 

repeated measures data. 
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DISCUSSION 

 In this study, using a combination of experimental and modeling methods, we 

have found a new means by which the pyloric network activity tends to maintain the 

phase of its activity intervals, and have presented evidence that suggests that this 

regulation may play a role in determining network activity period variability. 

 The cause of the pyloric network’s tendency to exhibit strong cycle to cycle 

maintenance of LP burst duty cycle, and why some networks do not, remain open 

questions. A few features of the network may play a role in establishing this regulation. 

The presence of synaptic depression could give rise to a type of burst width regulation, 

while the relative absence of the same may bias synaptic feedback to be conserved in 

burst duration and not in burst duty cycle (Manor et al., 2003; Greenberg and Manor, 

2005; Marder and Bucher, 2007; Mouser et al., 2008). Another possible contributing 

factor to differences seen in LP’s burst duration regulation may arise from differences in 

levels of relative strength of the PY to LP synapse, where a strong synapse might 

terminate LP bursting effectively while a lack of strong feedback here may tend to defer 

termination of LP’s burst to inhibition via AB/PD (Skinner et al., 1994).  

 The synapses in this system exhibit both graded and spike mediated inhibitory 

chemical components (Maynard, 1972; Maynard and Walton, 1975; Graubard, 1978; 

Graubard et al., 1980, 1983; Mulloney, 1987). In the intact network (Fig. 15C) these 

synapses allow AB/PD to impose intervals of strong inhibition on the LP and PY 

follower neurons while AB/PD is actively bursting, which ceases once AB/PD bursting 

terminates, which initiates post-inhibitory rebound in both LP and PY. But since there is 
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mutual inhibition between LP and PY and LP recovers from inhibition more quickly than 

PY (Marder and Calabrese 1996), active LP delays the onset of bursting in PY via the 

influence of the LP→PY synapse. This synaptic delay of PY onset not only helps 

determine the stereotyped triphasic bursting order observed in the pyloric network (Fig. 

15), but may play a role in setting LP burst width due to synaptic feedback. LP and PY 

are finally inhibited by the next burst of AB/PD, which restarts the next cycle. With all of 

these complex synaptic interactions, LP burst width has the potential to be regulated by 

its synaptic interactions, but how exactly such regulation occurs in the pyloric network, 

and what its functional implications may be, are not well studied questions. 

 Finally, a recent study has shown that neuromodulation of crustacean gastric mill 

CPGs can counterbalance underlying perturbations to the circuit due to changes in 

temperature (Städele et al., 2015), which may indicate a role for mechanisms external to 

the network itself such as neuromodulation. That such neuromodulation may or may not 

be expected to operate on timescales coincident with the pyloric network’s cycle period 

are not critical. A combination of relatively fast mechanisms may collectively create 

strong cycle-by-cycle regulation as an emergent property. Our results showing strong 

cycle-by-cycle regulation should in no way be taken as discounting the presence of 

slower mechanisms of phase maintenance. Statistical procedures such as the cross-

correlation analysis employed here inherently have more limited ability to detect slower 

effects that occur over many cycles, especially in light of the limited statistical power 

common in electrophysiological studies. We can only conclude that there is strong 

correlation on a cycle-by-cycle basis between period and feedback burst duration in the 

pyloric networks we observed. 
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 Why some of our networks did not show cycle-by-cycle phase maintenance, while 

there have been no reports to date of pyloric networks failing to exhibit phase 

maintenance as measured by imposing large changes in cycle period of a pyloric network, 

may at first seem contradictory, but testing for the presence of both cycle-by-cycle phase 

maintenance and phase maintenance due to imposed changes in pacemaker period in the 

same preparation was beyond the scope of our work. That the same processes may 

underlie both kinds of phase regulation is not clear, so it is unlikely that our findings cast 

any doubts on previous research on phase maintenance. 

 Our other major conclusion of this study was that a VFU designed to reproduce 

the cycle-by-cycle regulation of LP feedback burst width as closely as possible minimizes 

network variability of period. It does not necessarily impact variability of other intervals 

in the network, such as PD burst duration and interburst-interval. A superficial look at the 

results of Fig. 23 indicates that the primary interval being modulated to reduce variability 

would be the interburst-interval, but closer examination of the variability in each of these 

intervals in individual experiments (Fig. 23A1,B1,C1) indicates some unexpected 

relationships between variability of network period, PD burst duration, and PD interburst-

interval that do not appear to be consistent from one animal to another. For example, in 

the green trace representing one experiment, while the directly proportional feedback 

strategy minimizes variability in period, it maximizes variability in both PD interburst-

interval and burst duration, indicating a complex relationship that is not observed in other 

preparations. 

 Two of the VFU burst regulation strategies we used were based on observations 

in the biological pyloric network, while the third, inversely proportional, strategy was 
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chosen based upon mathematical symmetry and theoretical interest. But at least one 

computational study indicates that something like it could theoretically be possible, in the 

generation of anti-phase-maintaining bursts in a modified model based upon a pyloric 

neuron (Hooper et al., 2009). 

 

Limitations 

 The presence of autocorrelation in some preparations made it difficult to conclude 

that any phase maintenance observed occurred primarily on a cycle-by-cycle basis, in 

contrast to preparations that exhibited no autocorrelation of network period. But the 

absence of more than one statistically significant peak in the cross-correlation in 

preparations that did not exhibit autocorrelation, combined with the lag 0 cross-

correlation peaks being the largest significant peaks in the cross-correlation of 

preparations with autocorrelation, indicates a likely similarity. 

 In our hybrid networks we designed our VFU burst width regulation strategies to 

reproduce phase maintenance as it would occur in the pyloric network as closely as we 

can within the limits of causality, in not being able to calculate and deliver a phase 

maintained burst width based upon a measured network period that has yet to complete 

its cycle. As a result there was an offset of one cycle of burst width regulation relative to 

that observed in the biological networks. This distinction does not appear to be as 

consequential for neurons with significant autocorrelation in network period fluctuations 

due to the nature of fluctuations occurring on a timescale slower than one cycle period, 

which causes the feedback burst width control to perform very similarly to what would be 

expected in a biological network. The presence or absence of autocorrelation in network 
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period did not appear to be a factor in the directly proportional burst regulation strategy’s 

tendency to most strongly minimize network period variability among the strategies we 

studied. Since the presence of autocorrelation as in Figs. 20,21 tends to make the hybrid 

network results more similar to what would occur in a network with no lag in cycle-by-

cycle burst width regulation—such as a biological pyloric network—by reducing the 

importance of individual cycle burst width due to fluctuations that occur of many cycles, 

for these preparations we can conclude that the presence of autocorrelation helped 

overcome the limitations of our hybrid networks. 
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CHAPTER 5: CONCLUSIONS 

 

 The goal of much study in neuroscience is to one day understand how 

astonishingly complex neural networks give rise to the activity and wondrous, almost 

incomprehensible computation that undergirds life and is at once flexible, powerful, 

intricate, delicate, and mysterious. One intermediate goal along that path seeks to address 

the hope that we may one day be able to treat or even cure dysfunction of the nervous 

system that gives rise to debilitating disorders such as Parkinson’s disease, schizophrenia, 

and epilepsy. Because such neural disorders are often marked by dysfunction in 

rhythmogenesis (Brown et al., 2001; Worrell et al., 2004; Uhlhaas et al., 2008; Zijlmans 

et al., 2012), understanding links between underlying neural network properties and their 

associated rhythmic activity may one day shed light on the origins of disease (Yu et al., 

2008; Rieubland et al., 2014). 

 Our focus was on discovering dynamical response properties of networks capable 

of exerting control over the variability of rhythmic neuronal network activity, and found 

two such properties: phase response properties of a feedback neuron, and rapid phase 

regulation of burst width in a feedback neuron. 

AIM 1: CHAPTER 2 

We addressed how feedback to a bursting biological pacemaker with intrinsic 

variability in cycle length can affect that variability. Specifically we examined a hybrid 

circuit constructed of an isolated crab AB/PD pyloric pacemaker receiving virtual 

feedback via dynamic clamp. This virtual feedback generated artificial synaptic input to 
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PD with timing determined by adjustable phase response dynamics that mimic average 

burst intervals generated by LP in the intact pyloric network. Using this system we 

measured network period variability dependence on the feedback element’s phase 

response dynamics, and find that a constant response interval confers minimum 

variability. We further found that these optimal dynamics are characteristic of the 

biological pyloric network. 

AIM 2: CHAPTER 2 

 Building upon previous theoretical work mapping the firing intervals in one cycle 

onto the firing intervals in the next cycle, we created a theoretical map of the distribution 

of all firing intervals in one cycle to the distribution of firing intervals in the next cycle. 

We then obtained an integral equation for a stationary self-consistent distribution of the 

network periods of the hybrid circuit, which can be solved numerically given the 

uncoupled pacemaker’s distribution of intrinsic periods, nature of the network’s 

feedback, and phase resetting characteristics of the pacemaker. The stationary 

distributions obtained in this manner are strongly predictive of the experimentally 

observed distributions of hybrid network period. This theoretical framework can provide 

insight into optimal feedback schemes for minimizing variability to increase reliability or 

maximizing variability to increase flexibility in central pattern generators driven by 

pacemakers with feedback. 
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AIM 3: CHAPTER 3 

 In Chapter 3, we found a novel mechanism by which pyloric networks regulate 

their activity intervals: cycle-by-cycle changes in feedback burst width proportional to 

period. Using dynamic clamp, we further found evidence that this regulation may play a 

role in optimizing pyloric networks’ activity variability by creating models that 

reproduced this regulation and some alternative regulation strategies, including no 

regulation (constant burst duration) and inversely proportional burst width regulation, and 

comparing the variability produced in response to interaction with identical biological 

AB/PD pacemakers . To date this indicates that out of the three overall properties for 

which the pyloric system has been examined for its effect on variability due to said 

underlying property, including inhibitory/excitatory makeup of its synapses (Selverston et 

al., 2000; Sieling et al., 2009), phase response properties of feedback neurons (Hooper et 

al., 2015), and burst width regulation of feedback neurons (Chapter 3), the pyloric 

network has proven to be optimal at minimizing network variability in every case. 

IMPLICATIONS FOR FUTURE WORK 

Our findings imply that for many kinds of computational studies, we may not be 

able to accurately assess the realism of constructed models if we neglect consideration of 

how real networks are adapted to variability. Classification of models based upon how 

they are adapted to realistic stochastic processes is not currently standard practice, and 

presents a number of challenges that must be overcome before such tests could be widely 

adopted in computational modeling. The nature of variability in each circuit of interest 
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must first be appropriately understood and modeled. Progress in this area is ongoing 

(Norman et al., 2013; Norman, 2014), but is not yet fully understood in most systems.  

Due to the exploratory nature of this research, our studies were performed in 

small networks with identified neurons and known connections. In combination with our 

hybrid network techniques, this allowed us to study simple network interactions one at a 

time. Generalizing these findings to more complex networks is a critically important next 

step for understanding and modeling the circuits of the brain and vertebrate nervous 

system. Vertebrate neuronal networks are no less intensely studied using computational 

modeling than invertebrate neuronal networks such as those we studied here, and in fact 

many vertebrate modeling studies have already utilized activity variability to gain insight 

into neural function such as gain control and propagation of spike synchrony in cortical 

networks (Diesmann et al., 1999; Chance et al., 2002; Rothman et al., 2009; 

Moldakarimov et al., 2015). However, due to the scale and multi-layered hierarchical 

organization of cortical networks (Felleman and Van Essen, 1991), they may pose the 

greatest challenge to finding adaptive differences in network properties due to variability, 

particularly given their demonstrated low levels of spike time variability (Mainen and 

Sejnowski, 1995; Bair and Koch, 1996; Haider et al., 2010). Considering the advent of a 

new understanding of the vertebrate spinal circuits that generate locomotor patterns as 

arising from a distributed organization of distinct rhythmic modules (Hägglund et al., 

2013; McLean and Dougherty, 2015)—together with their CPG action and amenability to 

new optogenetic tools—the spinal motor system is a well-positioned system in which to 

begin exploration of the relationships between network properties and stochastic network 

activity in vertebrate mammals. 
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